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INTRODUCTION

This document contains unedited reproductions of technical papers

on some of the most recent research results on the aerodynamics of high-

speed aircraft from the NACA Laboratories. These papers were presented

by members of the staff of the NACALaboratories at the NACA Conference

held at the Ames Aeronautical Laboratory July 8-10, 19_3. The primary

purpose of this conference was to convey to contractors of the military

services and others concerned with the design of aircraft these recent

research results and to provide those attending an opportunity to dis-
cuss the results.

A list of the conferees is included.
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CHAIRMAN 'S REMARKS

Nearly a year ago in an experimental investigation of wing-body

interference at transonic speeds Richard T. Whitcomb showed that for

zero lift a wing-body combination had the same drag rise as a body of

revolution having the same axial distribution of cross-sectional area

as the wing-body combination. This, in fact, constituted the experi-

mental proof of what we call the area rule. Once the area rule had

been clearly stated and proven experimentally it occurred to many that

the essence of this idea may have existed in the body of linear theory.

This, in fact, has proved to be the case but these parts of the theory

and their significance had been overlooked by everyone.

Since the first work establishing the area rule for the transonic

range, a very considerable study of the problem has been made to attain:

first, maximum benefit from its application; second, establishment of

its limitations; and third, extension from the transonic to the super-

sonic range. As of the date of this conference there has been insuffi-

cient time to accumulate the necessary information to answer every

question that might be raised.

The first four papers, however_ are presented to review, to extend,

and to summarize the area-rule question theoretically, experimentally,

and in applications.
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THE ZERO-LIFT DRAG CHARACTERISTICS OF WING-BODY

COMBINATIONS AT TRANSONIC AND

MDDERATE SUPERSONIC SPEEDS

By Richard T. Whitcomb

Langley Aeronautical Laboratory

This paper is concerned prlmarilywith the application of the

"area rule" to the interpretation and improvement of the drag-rise char-

acteristics of wlng-body combinations at transonic and moderate super-

sonic speeds.

Consideration of the general physical nature of the flow at tran-

sonic speeds, together with comparisons of the flow fields and drag-rlse

characteristics for wing-body combinations and bodies of revolution has

led to the conclusion that near the speed of sound the drag rise for a

thin low-aspect-ratio wing--body combination is primarily dependent on
the axial distribution of cross-sectional area normal to the airstream

(ref 1). (The drag rise, sometimes referred to as pressure drag, is

the dlfference between the drag level near the speed of sound and the

drag level at subsonic speeds where the drag is due primarily to skin

friction.) In order to illustrate the concept, figure 1 shows a wing-

body combination and a body of revolution. A typical cross-section

normal to the airstreamfor the wing-body combination is shown at AA.

The cross-sectional area of the wing is wrapped around the body of

revolution so that the body has the same cross-sectlonal area at BB.

All the other cross-sectional areas of the body of revolution are the

same as those for the wing-body combination at the same axial stations.

On the basis of the conclusion just stated, the drag rise for this body

of revolution should be similar to that for the wing-body combination.

This relationship of the drag-rise increments for the wing-body com-

bination and the comparable body of revolution is due primarily to the gen-

eral similarities of the major portions of the extensive flow fields of the

configurations. These similarities are illustrated in figures 2 and 3

which present schlieren photographs of the flow fields for unswept- and

sweptback-wingobody combinations, together with those for equivalent

bodies of revolution. The combinations have been rolled to three positions

so that side, plan, and intermediate views are seen. Near the edges of the

pictures, the observed shocks for the combinations in each view are gen-

erally similar to those for the equivalent bodies. These comparisons
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are indicative of the similarities of the extensive fields beyond the
view of the schlieren. Near the configurations there are differences
of the flow fields for the wing-body combinations and equivalent bodies
of revolution. However, the major portion of the energy losses associ-
ated with the shocks is produced in the extensive regions at appreciable
distance from the configuration. Therefore, from a drag standpoint, it
maybe assumedthat these differences near the configuration are of
secondary importance. The general similarities of the extensive flow
fields at distances from the configuration may be attributed to several
aerodynamic phenomenacharacteristics of flow near the speed of sound.
First, the field of any given displacement is concentrated in a plane
nearly normal to the airstream. Because of this fact, the streamwise
locations of the effects of the displacements of the wing are essentially
the sameas those for the corresponding effects produced by the compar-
able body of revolution. Secondly, at these considerable lateral dis-
tances from the configuration, the field is primarily dependent on the
general displacement of the configuration rather than on the details of
the shape. The generally close similarities of the effective fields for
the wing-body combination and the comparable body of revolution in the
regions producing the main portion of the shock losses suggests that

the energy losses associated with the shocks for the two configurations

should be similar. Since the drag rise for thin low-aspect-ratio wings

is due primarily to shock losses, the drag rise for the combination

should be approximately the same as that for the equivalent body of
revolution.

In figure 4, the measured drag-rise increments for various swept-,

delta-, and unswept-wing--body combinations and complete airplanes at

a Mach number of 1.03 are compared with the increments for equivalent

bodies of revolution. The aspect ratios of the wings are 4 or less

and the thickness ratios are 7 percent or less. Except for one con-

figuration, there is a general qualitative agreement between these drag-

rise increments. Deviations from exact agreement are due to second-order

effects, such as differences of the flow fields as shown in figures 2

and 3. The single case of marked disagreement is for a swept-wing air-

plane configuration. This disagreement cannot be fully explained at

present. As would be expected, the correlation between the drag-rise

increments of the wing-body combinations and the equivalent body of

revolution generally becomes less close as the Mach number is increased

beyond 1.O. The severity of this divergence varies markedly depending
on the configuration.

It would be expected on the basis of this concept that, near the

speed of sound, the minimumdrag rise would be obtained by designing a

wing-body combination with an area distribution similar to that for a

smooth body of revolution with the highest possible fineness ratio. The

fineness ratio that should be used is probably considerably less than

that required for minimum total drag because of such problems as airplane
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area distribution is to reshape the body. A number of experiments have

been made to determine the effectiveness of such reshaping. Represen-

tative results, obtained in the Langley 8-foot transonic tunnel, are

presented in figure 5-

On the left-hand side of this figure are shown the effects of such

a body modification on the zero-lift drag-rise characteristics of a

6-percent-thick, aspect-ratio-4, 45 ° swept-wing--body combination. The

solid line shows the variation of drag for the wing in combination with

a body of revolution of fineness ratio of ll. The wing is placed on

the body in such a manner that the leading edge of the wing is at the

maximum diameter of the body. With this arrangement, the indentation

used did not change the maximum cross-sectional area of the body. The

dashed lines are the results obtained for the wing in combination with

a body of revolution indented circularly to obtain the same area dis-

tribution as for the original body alone. For comparison, the results

for the body alone are also shown. Indentation eliminated approximately

90 percent of the drag rise associated with the wing at Mach numbers from

1.00 to 1.05. When the Mach number is increased beyond 1.05, the drag j

rise for the indented wing-body combination approaches that for the

original wlng-body combination.

On the right-hand side of figure 5 are presented the effects of

body indentation on the zero-llft drag-rise characteristics for a

4-percent-thick, 600 delta-wingmbody combination. The solid curve

shows the drag characteristics for the wing in combination with a body

of revolution having a fineness ratio of 7.5. The dashed line indicates

the drag variation after the body has been indented circularly to pro-

duce an area distgibution for the combination the same as that for the

original body alone. In this case the indentation reduced the maximum

cross-sectional area of the body somewhat. It may be noted that again

a significant reduction in the drag rise was obtained by such an inden-

tation at transonic speeds. However, in this case, the drag rise for

the indented wing-body combination is significantly greater than that

for the 1_ody alone. This deviation from the result which might be

expected on the basis of the area-distribution concept is probably due

to the fact that the body required to obtain the smooth area distribution

of the combination had a rather abrupt change in shape near the trailing

edge of the wing. This shape probably led to severe local velocity gra-

dients. Since the proper functioning of the body fields in offsetting

the drag of the wing depends to a great extent on the velocity gradients

being small, it might be expected that these severe gradients would lead

to an incomplete reduction in drag. Also, near the speed of sound, a

shock was present over this corner and may have caused some separation

at this point, which would not be expected on the original body alone.

It is probable that a further reduction in drag could have been obtained
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Similar reductions in drag near the speed of sound have been obtained
by body indentation for other delta and unswept wings.

Results obtained with smooth-surfaced configurations have indicated
a markedreduction in drag at subsonic speeds associated with the use of
indentation with swept and delta wings. However, with fixed transition
this difference is not present. The influence of surface conditions on
the effects of indentation apparently decreases with increase in the
Machnumberto supersonic speeds. The effect of body indentation on
the drag characteristics at lifting conditions is discussed in the paper
by EdwardC. Polhamus. Obviously, the volume of the indented wing-body
combination is not as great as that for the original wing-body combina-
tion. However, increasing the size of the body to recover the volume
lost in indentation would increase the dr_g for the indented combination
by a small fraction of this reduction in drag obtained.

The question now might arise as to whether it would be possible to
obtain drag reductions at transonic speeds by adding to an existing wing-
body combination to obtain a more favorable area distribution. Recently,
investigations have been madeof such additions on a 60° delta-wing air-
plane. Results are presented in figure 6. First, the fuselage was
extended approximately 8 percent to obtain a more favorable area dis-
tribution of the rearward portion of the airplane. This addition resulted
in significant reductions in the drag rise. Further reduction was obtained
by adding side fairings to the extended configuration to fill the dip in
the area distribution as shown. The body lines with these additions were
still relatively smooth. Additions which lead to severely irregular body
lines would not be recommended.

The effects of the changes in body shape on the total drag coeffi-
cients at Machnumbersup to 2.0 are shownin figure 7. The configurations
are the sameas those shownin figure 5. The results for Machnumber
above 1.15 were obtained in the Langley 4- by 4-foot supersonic pressure
tunnel. For the swept-wingnbody combination, body indentation had little
effect on the drag at Machnumbersfrom 1.4 to 2.0. For the delta-wing--
body combination, body indentation reduced the drag at all Fach numbers
up to 2.0 but by a progressively smaller amount. The fact that reduc-
tions were obtained at these supersonic speeds indicates that to a certain
extent the factors affecting drag at moderate supersonic speeds maybe
similar to those for transonic speeds for low-aspect-ratio thin wings such
as this one. However, since the waves are conical rather than plane in
nature when the Machnumber is increased to supersonic values, it would be
expected that the use of the transonic concept would not give the maximum
reductions in drag possible at supersonic speeds.

Considering the conical nature of the flow at moderate supersonic
speeds, a method has been developed which interrelates the wave drag of
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u_ions cross-wing-body combinations these speeds Wl_h axl_I dl_t_ of

sectional area. With this method a number of area distributions are used

to determine the drag at a given supersonic Mach number. These distri-

butions are obtained by cutting the configuration with planes inclined

to the airstream at the Mach angle. This method is basically the same

as one developed by Jones considering the linear theory of Hayes. A

description of the method, together with a discussion of its applica-

tions, is presented in the next paper by Robert T. Jones. However, some

preliminary results obtained at Langley are presented in figure 8 which

show how the drag may be reduced at supersonic speeds by reshaping the

fuselage on the basis of this method. The results are for a delta-

wing--body combination. The first three configurations shown are the

same as those shown in figure 7. The body of the fourth configuration

was indented circularly so that the various area distributions deter-

mined by this supersonic method for a Mach number of 1.4 were relatively

smooth. It may be seen that this indentation reduced the total drag

coefficients at supersonic speeds by significantly greater amounts than

did the indentation designed for a Mach number of 1.0 (dashed line).

At a M_ch number of 1.4, the further reduction is roughly half the

remaining pressure drag of the wing.

In conclusion, the results presented have shown that, near the speed

of sound, the drag rise for a low-aspect-ratio thin wingobody configura-

tion is generally a function of the axial distribution of cross-sectional

area normal to the airstream. By using this relationship, it is possible

to reduce greatly the drag rise of the conventional wing-body combinations

by redesigning the fuselage to produce a smooth axial distribution of area

for the combination. The resulting reshaped fuselage of the combination

should not have abrupt changes in contour. Of course, to obtain the

lowest possible drag coefficients, the fineness ratio of the equivalent

body should be sufficiently high.

_CE

1. Whitcomb, Richard T. : A Study of the Zero-Lift Drag-Rise Character-

istics of Wing-Body Combinations Near the Speed of Sound. NACA

RM L92H08, 1992.
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WING-BODY COMBINATION AND EQUIVALENT BODY OF REVOLUTION

Figure 1

TRANSONIC FLOW PaST BODY WITH STRAIGHT WING

90 ° ROLL 45 ° ROLL

0 ° ROLL

Figure 2
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Figure 3 

COMPARISON OF DRAG-RISE INCREMENTS AT Mz1.03 
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Figure &(a) 



8 CONFIDENTIAL

@@@ @o..: ..: : "': : "'. -..... .': .: : :
• • @@ • @@ • • • • @

".: ..: : : : ".. ".. :': ..: .." ..: ".:

PLAN FORM A

DETAILS OF CONVENTIONAL CONFIGURATIONS

A t_ k SYMBOL PLAN FORM A A 1_ k

II °

_:} LE. 2.6 .04 .2

34° 4 04 0 nL.E.

23° 3 D45 .4 0
L,E.

Z_ 60° 2.2 .03 0 v
LE.

Z_ 65= 1.87 .04 0
L.E.

(_ 52"
L.E. 2 .06 33

Z_ _ 60° 2.2 .04 0
L.E.

45° 4 .06 .6c/4

45 °

_ c/4 4 =.o6

(_ _ 45° 3.5 .07C/4

Figure 4(b)

SYMBOL

,=

DETAILS OF INDENTED CONFIGURATIONS

PLAN A A |/C }i. SYMBOL
FORM

, II °
iL.E. 2.6 D.4 .2 a

3_4 04 0 q

45_1 4 .06 .3 oC/4'

Figure 4(c)
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EFFECT OF BODY INDENTATION ON TRANSONIC DRAG RISE
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Figure 9
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EFFECT OF ADDITIONS TO BODY
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Figure 6 "
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THEORY OF _n_'_O_ _ _'_UPE_S_NIC S_EEgS'"

By Robert T. Jones

Ames Aeronautical Laboratory

At subsonic speeds the pressure drag arising from the thickness of

the body or wings is negligible as long as the shapes are sufficiently

well streamlined to avoid flow separation. In that range there exists

no possibility of either favorable or adverse interference on the pres-

sure distributions themselves. If one body is so placed as to receive

a drag from the pressure field of another, then the second body is sure

to receive a corresponding increment of thrust from the first.

At supersonic speeds this tolerance, which was permitted the

designer, disappears, and the drag becomes sensitive to the shape and

arrangement of the bodies. The primary factor certainly is the thick-

ness ratio; nevertheless, there exist arrangements in which a large

cancellation of drag occurs. Examples of the latter are the sweptback

wing and the Busemann biplane.

In the preceding paper Richard T. Whitcomb has shown how the drag

at transonic speeds may be reduced to a surprising extent by simply

cutting out a portion of the fuselage to compensate for the area blocked

by the wing. The purpose of the present paper is to discuss some of the

theoretical aspects of this method of drag reduction and to show how the

basic idea may be extended to higher speeds in the supersonic range.

The deduction by Richard T. Whitcomb of the "area rule" was based

on considerations of stream-tube area and the phenomenon of "choking,"

which follow from one-dLmens ...._-_ow theory. Each individual stream

tube of a three-dlmensional flow field must obey the laws of one-

dimensional flow. Although the three-dimensional field cannot actually

be determined on this basis alone, nevertheless it provides a good

starting point for our thinking. The results demonstrate again the

effectiveness of basic and simple considerations.

Although one-dimensional-flow theory thus provides a clue to the

area rule, the necessary principle appears more specifically in the

three-dimensional-flow theory. Thus, the formulas for wave drag given

by linear theory, if followed toward the limit as M approaches 1.0

(from above), show that the wave drag of a system of wings and bodies

depends solely on the longitudinal area distribution of the system as a

whole. This phenomenon was first noted by W. D. Hayes in his 1946 thesis

(ref. i). For a more complete derivation of Hayes' formula the reader

may consult reference 2. However, because of the limitations of the

theory at transonic speeds, this result was not thought to be of
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practical si a c • r _j, E. W. Graham
(ref. 4) and others, restricting themselves to very narrow shapes,
expressed the wave drag in terms of the longitudinal area distribution
for Machnumbersabove 1.0, where the linear theory has a better
j ust ificat ion.

It should be noted, however, that both of the problems cited are
limiting cases_of the more general problem of supersonic drag and it
should be borne in mind that only in certain cases has it been possible
to reduce the general theoretical formulas to the form of an area rule.
It can be shownthat the flow field about any system of bodies maybe
created by a certain distribution of sources and sinks over the surfaces
of the bodies. Hayes' formula relates the drag of such a system to the
distribution of these singularities. In order to obtain a formula for
the wave drag in terms of area distributions, a simplified relation
between the source strength and the geometry of the bodies, namely, that
the source strength is proportional to the normal componentof the stream
velocity at the body surface, has been adopted.

There are examples (e.g., Busemannbiplanes) for which this assump-
tion is not valid. If, on the other hand, we limit ourselves to thin
symmetrical wings mounted on vertically symmetrical fuselages, there
are indications that a good estimate of the wave drag at supersonic
speeds can be obtained on the basis of the simplified relation assumed.

If Hayes' method of Calculation is followed, at M = 1.0 the
expression for the wave drag of a system of wings and bodies reduces to
Von K_rm_n's well-known formula for the wave drag of a slender body of
revolution, that is,

a

D

_0v,/" /"/' -

Here S(x) represents the totalcross-sectional area intercepted by a

plane perpendicular to the stream at the station x (see fig. l) and

S"(x) is the second derivative of S with respect to x. If Sears

method (ref. 5) is followed, S'(x) may be expanded in a Fourier's

series and, in this way, a formula for the drag which is completely anal-

ogous (ref. 6) to the well-known formula for the induced drag of a wing

in terms of its spanwise load distribution may be obtained. Thus, if

x = _Z cos e
2
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S' (X) = _--'A n sin n8

(see fig. 2), the wave resistance is

D = _pV2 E 2

Of all the terms of the series, each contributes to the drag but only

A 1 and A 2 contribute to the volume or the base area of the system.

Thus, in order to achieve a small drag with a given base area or with a

given over-all volume within the given length, the higher harmonics in

the curve S'(x) should be suppressed. This formula enables us to

classify a given shape as "rough" or "smooth" in a quantitative fashion.

In order to extend these considerations to supersonic speeds a

series of cross sections of the system made, not by planes perpendicular

to the stream but by planes inclined at the Mach angle or "Mach planes"

must be considered. By means of a set of parallel Mach planes (fig. 3),

an "equivalent body of revolution" using the intercepted areas was con-

structed and the drag was computed by Von K_rm_n's formula. The theo-

retical basis of this step is the fact that the complete three-

dimensional disturbance field may be constructed by the superposition of

elementary one-dimensional disturbances in the form of plane waves.

(See ref. 7.) It is evident that the set of parallel Mach planes may be

placed at various angles around the x-axis (fig. 3)- When the flow field

is constructed, it is necessary to superimpose disturbances at all these

angles and, when the drag is completed, to consider the drag of all the

equivalent bodies of revolution. The final value of the drag is simply

the average of the values obtained through a complete rotation of the
Mach planes.

In order to make these statements more specific, the equation of

one such Mach plane maybewri_ten as follows:

X = x - y' cos _ - z' sin

where y' =/M 2 - i y and z' =_ - i z. By assigning different

values to X while keeping _ constant, a series of parallel planes at

the same angle _ around the x-axis is obtained. By assigning different

values to _ while keeping X constant, a set of planes enveloping that

Mach cone whose apex lies at the point X = x can be obtained.
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t.hrough with a series of planes corresponding to different values of X.

The total intercepted area in each plane is then equated to the area

intercepted by this plane passing through the equivalent body of revolu-

tion. If we denote the area intercepted obliquely by s(X,_), then the

area S(X,_) is defined by:

s(x,,)= s(X,,)s_

is the Mach angle (i.e., sin _ _I" The term S(X,_) iswhere _ =
%

thus the area intercepted by normal planes passing through the equivalent

body of revolution on the assumption that this body is slender.

Therefore,

s(x,,)=_-An sin nes,(x,,)=_

with

X
COS e =

Here, however, both the length 2X o and the shape of the equivalent

body vary with the angle _. The drag of each equivalent body of revolu-

tion, which is denoted by D' (_), is then determined by applying Sears'

formula:

_P V2 ZnAn 2D,(,)=,,_--

The total drag of the wing-body system is the average of all these values

between _ = 0 and _ = 2_; that is,

ifo D = _ O'(,)d,

In general, the coefficients An are functions of the angle of

projection _. However, the calculation shows that the first two

coefficients A 1 and A 2 are again related in a simple way to the

base area and the volume V. Thus,
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A1 - 2 S(Xo)
Xo

4 V
A 2 = 2A 1

None of the higher coefficients contribute to the base area or volume,

but they invariably contribute to the drag.

The rules for obtaining a low wave drag now reduce to the rule that

each of the equivalent bodies obtained by the oblique projections should

be as smooth and slender as possible, the "smoothness" again being

associated with an absence of higher harmonics in the series expression

for s'(x).

In order to check the agreement between these theoretical formthlas

for the wave drag and experimental values, comparisons of the calcula-

tions with the results of tests made on falling models at Ames

Aeronautical Laboratory have been made. This comparison was made by

George H. Holdaway who supplied the accampanying illustration (fig. 4).

In some of these cases it was found necessary to retain more than

20 terms of the Fourier's series in order to obtain a convergent expres-

sion for the drag.

If the variety of the shapes represented here are considered, the

agreement is certainly as good as can be expected from the linear simpli-

fications. The agreement is naturally better in those interesting cases

in which the drag is small.

Figure 5 shows an analysis of one of the experiments of Richard T.

Whitcomb. The linear theory, of course, shows the transonic drag rise

simply as a step at M = 1.0. Such a variation may be expected to be

approached more closely as the thickness vanishes. In order to represent

actual values here, a nonlinear theory would be needed. For many pur-

poses, it will be sufficient to estimate roughly the width of the

transonic zone by considerations such as those given in reference 8. In

the present case it will be noted that agreement with the linear theory

is reached at Mach numbers above about 1.06 and the linear theory clearly

shows the effect of the modification.

For further theoretical studies of wing-body drag, shapes have been

selected that are especially simple analytically, namely, the Sears-Haack

body and the biconvex wing of elliptic plan form. Figure 6 shows the

effect of wing proportions on the variation of wave drag with Mach num-

ber, both with and without the Whitcomb modification. In each case, the

modification has the effect of reducing the wave drag to that of the body
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reduction remains effective over a considerable range of higher Mach num-

bers. With the higher aspect ratio, however, the drag increases sharply

at higher speeds so that, at M = 1.6, the modification nearly doubles

the wave drag.

i

The rapid increase of drag in the case of the high-aspect-ratio

wing is, of course, the result of the relatively abrupt curvatures

introduced into the fuselage lines by the cutout. Such abrupt cutouts

are necessarily associated with wings having small fore-and-aft dimen-

sions, that is, unswept wings of high aspect ratio.

These considerations led us to the problem of determining a fuselage

shape for such wings that is better adapted to the higher Mach numbers.

The first step in this direction is obviously simply to lengthen the

region of the cutout; thus, the rapid increase of drag with Mach number

is avoided. The problem of actually determining the best shape for the

fuselage cutout at any specifiedMach number has been undertaken by

Harvard Lomax and Max. A. Keaslet at Ames Laboratory. Their solution

of this problem provides a definite method for determining the distri-

bution of sources and sinks along the fuselage axis that will achieve a

minimum value of the drag for a given wing shape at any specified Mach

number. Furthermore, by admitting singularities of higher order,

quadrupoles, and so forth, which would distort the rotational symmetry

of the fuselage, they have been able to show that the wave drag of a

wing-body system can be reduced, in principle at least, to a minimum

value associated with the given over-all length and volume of the system,

that is, to the value for a simple Sears-Haack body containing the whole

volume of the system.

By adopting the simplified relation between the source strength and

the body shape, the result of this theory may be described by a relatively

simple concept, which is illustrated by figure 7. If modifications of

the first type only are considered, the problem is to determine the area

2_$f to be removed from the fuselage to make the best compensation for a

given wing. (See fig. 7.) If a station along the fuselage axis and a

Mach plane passing through this Station are selected, this plane can be

revolved around the axis, and at each angle _ the normal projection,

or frontal projection, of the area intercepted where the plane cuts

through the wing can be measured. After these areas are plotted against

and integrated between 0 and 2_, the term -Z_Sf is obtained as the

average of the values of Sw. At any Mach number the total volume to be

subtracted from the fuselage is equal to the wing volume. At higher

Mach numbers, since the modification extends over a greater length, the
area subtracted at individual cross sections becomes less.

Figure 8 shows the calculated result of designing the fuselage cut-

out for a specific Mach number, M = 1.2 in this case. The lower curve
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a radially symmetric cutout.

Figure 9 shows the magnitude of the gains that are possible by

higher-order modifications of the fuselage shape. There are three

lower bounds here and the symbols ao, a2, attached to them

refer to a representation of the fuselage shape by singularities of

increasingly higher order. The curve labeled ao is that given in

figure 8 and shows the maximum effect of radially symmetric modifica-

tions. Although the fuselage shapes for the other curves have not

actually been determined, the curve labeled ao + a2 may be thought of

as referring to a cutout with an additional elliptic modification. It

will be interesting to pursue this investigation further and ascertain

just how the fuselage must be distorted to cancel the wave drag of the

wing completely, as indicated by the lowest envelope curve. Of course,

it will be necessary to start with a certain minimum diameter in order

to preserve a real shape.

In order to test this theory of determining optimum body shapes we

have started a program, using models similar to those investigated theo-

retically. Several of these models have already been tested in the Ames

2- by 2-foot wind tunnel and the results agree fairly well with calcula-

tions made on the assumptions given earlier. Figures l0 and ll show the

theoretical and the experimental curves. The aspect ratio of the wing

in these preliminary cases is not sufficiently high (A = 2) to enable

really striking gains to be shown. However, it is evident that the cal-

culated differences are all reproduced in the experimental values. The

experimental series include models having higher aspect ratios and more

significant gains are expected to appear.

There are, of course, examples of wing-body systems which would

_y.___ benefit by any change in shape of the fuselage. _ _- easy to

decide whether a gain is possible or worthwhile by comparing the actual

wave drag of the system with that of a Sears-Haack body containing the

over-all volume of the system. In the case of a 63 ° wing-body combina-

tion (ref. 9), this comparison yields 0.0045 as a lower bound for the

wave drag coefficient and 0.005 for the actual value. In such cases,

for which the wave drag is initially very low, further reduction by

reshaping the fuselage is not worthwhile. Appreciable savings in drag,

however, can be made in many cases by a calculated shaping of the fuse-

lage. Unswept wings of high aspect ratio are benefited most and require

the most careful consideration of the fuselage shape.

These new developments illustrate again the fact that the disturbance

fields at transonic and supersonic speeds are essentially three-

dimensional phenomena. It was not long ago that our ideas concerning the

wing section, which had their origin in the older incompressible flow

theory, had to be relinquished because of the predominating effects of

wing plan form. Now the _elage must be designed together.
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CALCULATION OF WAVE DRAG FOR M---_ I.O

EQUIVALENT BODY OF REVOLUTION

9

GRADIENT OF AREA

Figure 1

CALCULATION OF WAVE DRAG FOR M--,, 1.0

FOURIER'S SERIES;

S'(x) = _:An sin n8

x = _ c_s8

WAVE DRAG:(M---_I.O)

D = "n'Pv 2
8 T.. n A2n

OPTIMUM SHAPE;

S'(x} = A2 sin 28

( SEARS-HAACK BOOY)

Figure 2

Iii
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DRAG OF EXTERNAL STORES A_[D NAC_S AT TRANSONIC

AND SUPERSONIC SPEEDS

By Norman F. Smith, Ralph P. Bielat, and Lawrence D. Guy

Langley Aeronautical Laboratory

INTRODUCTION

The problem of designing nacelles and stores is one of providing the

desired volume in an acceptable shape or position at the lowest possible

cost in airplane performance. There is considerable evidence that such

volume can often be more efficiently carried within the basic wing-body

combination, especially at supersonic flight speeds. Discussion of sub-

merged or integral arrangements, however, involves complex design studies

which are beyond the scope of this paper. This paper deals entirely with

external stores and nacelles, primarily wing-mounted on airplane-type

configurations. The status of the problem is reviewed and the research

which has been done on the subject examined in the light of recent devel-

opments.

DISCUSSION

Figure 1 shows a plot of drag coefficient based upon individual

frontal area against Mach number. The shaded areas show the Mach numbers

_ _g-coefficient values corr_espondi__ to nacelles _ud stores w__ich

have been investigated to date. All of these data have been published.

A list of the ones which are used in detail in this paper is given in the

references. The values of drag coefficient which have been obtained in

the transonic range vary from above 0.8 to near zero. At the three higher

supersonic Mach numbers, the values vary from nearly 0.8 to around 0.23.

The lower shaded band shows the range of drag values covered by isolated-

body drags for satisfactory supersonic bodies of fineness ratio 6 to 9,

approximately (refs. l, 2, and others). This figure shows that zero

interference and even greatly beneficial interference have been obtained

on configurations in the transonic range up to M = 1.2 (refs. 3 to 5,

for example). Apparently, however, no beneficial interference has yet

been encountered with airplane-type configurations at the three higher

supersonic Mach numbers shown, and only in a few cases has interference near

zero been attained. It should be noted here that nacelle drags near zero

have in some cases been obtained for large ram-jet nacelles mounted on

missile configurations (ref. 6). This large favorable interference was

obtained in extreme aft positions wherein half the nacelle length



•.: • ..: : .: - :
@D @@ Q

• .: : " I ": "o:

extended beyond the fuselage base, positions very different from those

used for airplane nacelles. (Further evidence of large favorable inter-

ference for nacelles in this region has been found in the theoretical

work of ref. 7-)

The store and nacelle data which make up these shaded areas in

figure 1 have been examined in detail to determine some of the factors

which govern the drag of these installations.

Transonic Speeds

The drag level for nacelles or stores at subsonic Mach numbers is

important, of course, as is the Mach number at which drag rise begins.

The principles governing these items are relatively well known and are

not discussed herein.

In the transonic region, the type of flow which follows the onset

of shocks - with shock interactions and interference, local choking, sep-

aration, and so forth - is very complex. The interference problem is

therefore a very difficult one for theoretical treatment. Also, the

nature of the flow plus the large number of configuration variables

involved makes experimental investigation difficult in that results tend

to be rather specific in nature. It is therefore of interest to apply a

simplifying principle, when one is available, such as the transonic area

rule discussed in a previous paper by Richard T. Whitcomb. Consequently,

the bulk of the transonic data which have been obtained on stores and

nacelles, most of which have been published and analyzed with respect to

spanwise and chordwise position, has been re-examined in the light of

the area rule.

Figure 2 shows the transonic drag-rise data for the series of span-

wise symmetrically mounted nacelles tested in flight by the Langley Pilot-

less Aircraft Research Division on a 45 ° swept wing of aspect ratio 6,

t/c = 0.09 (ref. 5). On the right-hand side of the figure is a sketch

which shows the location of the nacelle and a diagram of the cross-

sectional area variation of each configuration. In this figure and in

figures 3 and 4, the data are plotted as drag increments above the level

for M = 0.8 in order to eliminate the skin-friction drag. Figure 2

shows that the highest drag rise is obtained with the nacelle position

giving the highest peak on the area diagram and the highest slopes for-

ward and aft. The lowest drag is obtained with the nacelle position

which affects the wing-body area diagram least. In looking at the

transonic drag rises in terms of spanwise variation of nacelle position,

it is noted that the drag is least at the tip, rises to a pesk value

at 0.4b/2, and decreases again as the nacelle is moved still farther

inward to 0.18b/2. This phenomenon had thus far gone unexplained. The

area rule provides, in this case and others to be mentioned subsequently,
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a simple explanation. It will be noted that the differences between the

drag curves are small. This is a result of the fact that these nacelles

are small, corresponding roughly to single-engine units.

Figures 3 and 4 show similar results obtained from wind-tunnel tests

conducted in the Langley 8-foot transonic tunnel and 4- by U-foot super-

sonic pressure tunnel (refs. 8 to l0 and some unpublished data) of a

sting-mounted configuration involving a series of nacelles of twln-engine

size on a swept wing of aspect ratio 3.5 with 47 ° sweep and a thickness

ratio of 6 percent. The series shown in figure 3 is a family of pylon-

mounted nacelles which involves a forward and downward movement at one

spanwise station, and the series in figure 4 consists of different types

of nacelles. Again correlation with the area diagram is clear, with the

top configurations having the least favorable area diagrams and the high-

est transonic drag rises.

The equivalent stream-tube area corresponding to the internal flow

has been subtracted from the areas shown in figure 4. Note the particu-

larly low drag rise for the installation buried in the wing root with

provisions for air intake at the leading edge. This installation is

actually more a submerged installation than an external one but is shown

here because of its excellent drag characteristics and because it was a

part of the test series. Plots of drag-rise data for the configurations

shown in these two figures at lift coefficients up to 0.5 have been made

and show that the curves maintain the same relationship to each other as

do the curves shown here for CL = O.

Examination of the nacelle and store information from the Langley

Pilotless Aircraft Research Division, 7- by lO-foot tunnels, and 8-foot

transonic tunnel shows area-diagram co_relations consistent with those

shown in these three examples.

The dashed lines in figures 3 and 4 connect the limited number of

supersonic points which are available for some of these configurations.

The supersonic points in figure 5 show that the high drag levels obtained

transonically do not necessarily persist into the supersonic speed range.

The indication is thus that the requirements for low wave drag in the

transonic range may be different from those in the supersonic speed range.

The supersonic range will be treated in more detail subsequently.

Because interpretation of area diagrams tends to become somewhat

indefinite in some cases, a very simple parameter concerning the area

diagram has been devised. In figure 5 the data from the series of dif-

ferent nacelles and the series of pylon-mounted nacelles, most of which

were shown in figures 3 and 4, have been plotted as incremental drag

coefficients against x/Z, where x is the distance from the area peak

of the wlng-fuselage combination to the area peak of the complete-model

configuration, the areas having been obtained by sectioning the models
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in planes perpendicular to the longitudinal axis. Data for M = 1.O are

shown at the left; data for M = 1.1, at the right. The M = 1.1 condi-

tion corresponds to the completion of the drag rise, while at M = 1.O the

drag values are still rising rapidly. The correlation at both Mach numbers

is very good. A number of different nacelle configurations and different

types of area diagrams are involved, as will be remembered from figures 5

and 4. The correlation shows that the highest drags are obtained when

the area peaks coincide, with the drag decreasing rapidly as the area

peaks are displaced. Note that the parameter used does not show effects

of area coincidence alone. As the peaks are moved, slope changes forward

and aft also occur. This parameter is therefore only one small step

removed from visual interpretation of the area diagram.

Thus, by reanalysis of a large amount of nacelle and store data, it

was found that correlation with the area rule is found for many types of

nacelles or stores in positions from wing root to wing tip, and that

explanation of phenomena not heretofore explained is afforded. Because

the configurations considered were all designed without regard for the

area rule, it is very difficult to extract quantitative data from this

work. Changes in area-diagram characteristics from one configuration to

another involve random simultaneous changes in peak height, local slopes,

and over-all shapes. Controlled experiments are needed to provide valid

quantitative data.

Proof of the importance of the area rule is strengthened by demon-

stration of its use in the design of configurations complete with

nacelles. Figures 6 and 7 show unpublished results for two delta-wing

configurations from wind-tunnel and flight tests by the Pilotless Aircraft

Research Division. The configuration shown in the left side of figure 6

has an area diagram which shows a very high peak and high slopes forward

and aft, due largely to the nacelles. The drag for this configuration is

very high, as is the drag (plus interference) for the nacelles, obtained

by subtraction. Data obtained in the Langley 16-foot transonic tunnel for

the same configuration, but with air flow through the nacelles, show some-

what lower drag. The area diagram for this case, which is reduced by

allowance for the equivalent stream-tube area through the nacelles, is

shown by the long dashed lines.

A sketch of a second version of this configuration is shown in the

right side of this figure. The wing W_ enlarged and thinned somewhat

and the nacelles were split into forward and aft pairs. The fuselage was

lengthened and was undercut slightly in order to make the area diagram

for the complete configuration correspond closely to a parabolic distri-

bution of higher fineness ratio than the previous model. The drag curve

shows a drag reduction for this configuration of nearly 50 p@rcent, or

40 percent of the configuration at left with air flow. The nacelle con-

tribution in this case is not known, but it is clear that a similar

reduction in nacelle drag and interference has occurred.
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Figure 7 shows that in both of these cases, the drag characteristics

of the complete configuration are closely simulated by drag characteris-

tics of the body of revolution having an equivalent longitudinal area

development. The measured drags for the equivalent bodies have been cor-

rected to the skin-friction level of the complete configuration in each

case. The configuration at the left is one of the configurations dis-

cussed by Richard T. Whitcomb in a previous paper wherein the item of

equivalent bodies was treated in some detail.

Supersonic Speeds

In the supersonic speed range, the bulk of the experimental data,

which have been obtained in addition to the data from the Langley

4- by 4-foot supersonic pressure tunnel shown in figures 3 and 4, is

that obtained in the Langley 9- by 12-inch supersonic blowdown tunnel

(refs. ll to 13). Figure 8 shows the configurations tested: a half-

model fuselage with a samispan unswept, a 45 ° swept, and a 60 ° delta

wing. The store is of the Douglas store shape and was tested with the

store center of gravity in the locations shown on the sketches. The store

and wing surfaces were tangent for those chordwise positions where the

maximum thicknesses coincided and were separated by a very short pylon for

other positions. The store size may be considered to correspond roughly

to a single-engine nacelle on a large bomber airplane.

The data presented in figure 9 are plotted in the form of store-plus-

interference drag CDN against spanwlse position for M = 1.41 and 1.96.

Data for M = 1.62 are also available and agree well with the other two

Mach numbers but are omitted here for slmplici_y. The data show that,

in general, for all three wing configurations, moving the store outward
decreases the store drag. A similar plot of chordwise positions (fig. 10)

shows that moving the store forward decreases the drag. Exceptions to

these generalizations are evident, however, in the solid symbols connected

by dashed lines for the swept and delta wings, for which positions the drag

is a great deal lower than would be expected or predicted by a straight

line drawn through the remaining symbols.

Attempts to correlate these and some unpublished data on the basis

of nacelle position with respect to the wing leading edge, fuselage nose

Mach line, wing local maximum thickness, to mention a few, all failed -

if any correlation was obtained it contained exceptions which could not

be explained. This difficulty of correlating or generalizing is, of

course, similar to that mentioned previously for nacelle and store studies

at transonic speeds.

An extension of the transonic area rule was utilized in an attempt

to correlate these data. The more complete supersonic theory, which
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involves sectioning the configuration by a series of planes tangent to

Mach cones, has been described in a previous paper by Robert T. Jones.

The method used here, as an exploratory approach, involves only one

set of the planes indicated by the theory; that is, parallel vertical

planes which intersect the configuration plan form along Mach lines. It

will be noted that the fuselage in this case employed a cylindrical after-

body. The fuselage nose, therefore, can affect the pressure drag of the

nacelle and wing, but the nacelle and wing cannot appreciably affect the

pressure drag of the fuselage afterbody. It therefore appeared that the

principal lines of influence or interference were Mach lines originating

at the fuselage center line and that sectioning or viewing the model along

these particular Mach lines might correlate the principal variations.

Figure ii shows the results of the correlation. The drag data for all the

configurations shown in figure 8 have been plotted against x/Z, which is

the areaIpeak displacement parameter defined in the sketch (top part of

fig. ii). (x is the distance between the peak of the area diagram of the

store and the peak of the area diagram of the wing-fuselage combination,

the area diagrams being obtained by sectioning the semispan configuration

along Mach lines in the lateral plane and plotting the cross-sectional

area given by each slice at the intercept on the fuselage center line.)

Clearly, the data show a strong trend similar to the one shown in

figure 5 for the transonic case. If located in a region where its area

peak adds to the wing-fuselage peak (viewed along the Mach line), the

store produces higher drag than if located a short distance forward or

aft of the X = 0 point. It will be noted that data from three differ-

ent wing configurations, a straight, a swept, and a delta wing, and data

at three supersonic Mach numbers, 1.41, 1.62, and 1.96, are all included

in this plot.

This correlation plot explains the low drag points which appeared to

contradict the spanwise and chordwise trends shown in figures 9 and i0.

The solid symbols to the right of x/_ = 0 are for these configurations.

These drag values are in proper positions as located by the area diagram

parameter x/Z, and the low drag is explained by area-peak displacement.

It will be noted that at neither end of the curve of figure ii has

a minimum drag been reached. This means that minimum drag values will

be attained at more extreme forward or aft nacelle positions than those

tested. Practical difficulties may appear, however, in using such posi-

tions for airplane configurations.

There is considerable scatter of points from the trend llne which has

been drawn through the data. Only a part of this scatter can be explained

by the data-accuracy spread shown by the width of the trend line. Some

scatter in any correlation of this kind is to be expected, inasmuch as

it is not reasonable to expect a perfect explanation of a complicated
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flow condition in terms of this very simple parameter. There are a large

number of details which can greatly affect the drag. These details are

wlng-fuselage and wing-nacelle Junctures, the detail design of each com-

ponent, the effects of localized shock patterns, and so forth. Such

details would influence the pressure drags to some extent and would partic-

ularly influence the friction drag which is not included in the area _le.

It should be mentioned that attenuation of interference effects as

bodies are separated is also involved in the supersonic case. This fac-

tor causes the pressure interference between store and fuselage to dim-

inish as the store is moved tlpward on the wing. This item is included

in the complete treatment mentioned previously which considers all the

planes. The interference problem in the case of the tlpward store is
reduced to one of local interference of a more familiar nature between

wing and store.

CONCLUSIONS

The following conclusions are indicated:

1. The transonic area rule can be applied to configurations involving

many kinds of stores or nacelles in locations from wing root to wing tip.

2. The area rule is shown to function at supersonic Mach numbers in a

similar fashion, utilizing in this first analysis, sectioning vertically
along Mach lines originating at the fuselage center llne.

3- The appreciable scatter which is present in the area-rule correl-

ations may be reduced in later refinements but will always be present

because of detail conditions or differences. It is emphasized, therefore,

that good detail design of components, Junctures, and so forth, must be

adhered to. The area rule then offers a useful means by which the designer

may arrange or integrate these components into the complete configuration

having the best possible area and drag characteristics.

4. Quantitative data are lacking in all correlations because this

analysis was based upon previous investigations which were not planned

for obtaining such data. Further research is needed, using the area

rule and other theory as a guide, to obtain quantitative design data on

the interference and optimum location of stores and nacelles.
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PRESSURE DRAG OF BODIES AT MACH _BKRS UP T0 2.0

By Robert L. Nelson and William E. Stoney, Jr.

Langley Aeronautical Laboratory

The drag of bodies has now assumed greater importance because, as

shown in the previous papers by Richard T. Whitcomb and Robert T. Jones,

the transonic drag rise of mn airplane can be the same as its equivalent

body. Obviously, the airplane designer would like his airplane to have

a low-drag equivalent body. This paper shows some of the factors which

minimize the drag of bodies at transonic and supersonic speeds and shows

some of the penalties caused by deviating from low-drag body shapes.

Drag reductions can be obtained in two ways, first, through increasing

the body fineness ratio, and secondly, through better shaping the body

profile at a given fineness ratio. The effects of fineness ratio are

discussed first and then, more completely, detail shape effects.

Largest reductions in body drag result from increases in body fine-

ness ratio as is shown in figure 1. In figure 1 the variation of air-

plane drag with equivalent body fineness ratio at M = 1.09 is plotted.

In order to do this the pressure drag of an airplane is assumed to be

the same as that of its equivalent body and CD is based on wing area

in order to get the results in more familiar terms. For the calculations,

airplane volume and wing area are assumed to be constant. The values

used are representative of a bomber-type airplane. The data points are

from free-flight model tests of parabolic bodies having different maximum-

diameter positions and base sizes (refs. 1 and 2). The curve simply con-

nects the lower drag points. The difference between the total-drag curve

and the friction-drag curve represents the minimum pressure drag for a

given volume and fineness ratio for these body shapes. The minimum total-

drag curve shows the large reduction in airplane drag obtained with an

increase in equivalent body fineness ratio. Largest reductions in drag

occur at fineness ratios below ]2, whereas the minimum drag occurs at

about a fineness ratio of 24. This value will change somewhat for other

Mach numbers and Reynolds numbers. Careful attention must be given to

the nose and afterbody components which make up the body as indicated by

the spread of test points at a given fineness ratio. Although not shown

in figure l, two wing-body configurations from the previous paper by

Norman F. Smith, Ralph P. Bielat, and Lawrence D. Guy had approximately

the same ratio of volume-to-wing area as for this plot. One configura-

tion, of fineness ratio 6.9, had a CD of 0.036 while the other, having

an equivalent body fineness ratio of 9 and a better shape, had a CD

of 0.022. This effect of fineness ratio and the level of drag therefore

is verified by the actual wing-body tests. The prime importance of fine-

ness ratio on drag has been shown and the problem will now be analyzed

in more detail.
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In figure 2 the breakdown of a typical curve of drag coefficient
against Machnumberfor a body neglecting base drag is shown. For bodies
with bases, the base drag can be calculated by using the results of Love,
Chapman,Cortright and Shroeder, and others (refs. 3 to 5). The friction
drag can be calculated by the usual methods. The supersonic pressure
drag for good bodies can be calculated at Machnumbers above that for
shock attachment MS by the second-order theory of Van Dyke (ref. 6).
This paper considers mainly the range of Mach numberbelow MS where
the problem is difficult to analyze theoretically. This range is defined
by the Machnumberfor peak drag Mp and the drag rise Machnumber MDR.

Figure 3 shows correlations of drag rise and peak drag Machnumbers
for a numberof parabolic bodies (refs. 1 and 2). For the upper series
of test points the Machnumberfor peak drag is plotted against nose
fineness ratio. The curve shownis the Machnumber for shock attachment
to parabolic noses. The curve and the test points showthe samegeneral
trends and indicate the dependenceof the Mach numberfor peak drag on
the Machnumber for shock attachment.

For the lower series of test points, the drag rise Machnumber is
plotted against the nose or afterbody fineness ratio, whichever is the
least. The nose and afterbody test points fall within the sameband and
indicate that the drag rise Machnumbermaybe determined by either the
nose or afterbody and is dependent mainly on fineness ratio.

Before discussing the peak drag of bodies, an examination is made
of someof the effects of nose shape on drag at various Machnumbers.
Figure 4 shows the drags of a numberof fineness-ratio-3 noses. Although
drags at this fineness ratio are relatively high, this fineness ratio was
chosen so that the drag increments between the different shapes were more
easily measurable. The results are presented in bar-graph form at
M = 1.05, 1.24, and 2.0. The nose shapes include the cone, the parabolic
nose having its vertex at maximumdiameter, the L-V Haack nose (designed
for minimumdrag for a given volume and length), the hypersonic optimum
or x3/4 nose, the Von K_rmannose (designed for minimumdrag for a
given length and diameter), and the xl/2 nose (which is a parabolic nose
having its vertex at the tip). At M = 1.05, the results are from free-
flight model tests from the Langley helium gun (at the testing station at
Wallops Island, Va.); at M = 1.24 and 2.0, the results are from the Ames
l- by 3-foot supersonic tunnel (ref. 7) except for the parabolic nose.
For the parabolic nose, the results are from second-order theory. At
M = 1.05, the xl/2 nose, which has a relatively blunt tip, has the
least drag and is followed by the Von Karm_nnose. At M = 1.24, the
sameresult holds true. At M = 2, the hypersonic optimum nose has the
least drag. This result also holds true at Machnumbers greater than 2.
The xI/2 nose at M = 2 has higher drag as a result of its blunt tip.
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Although the Von K_m_n nose has good drag characteristics over

the Mach number range tested, it must be remembered that this nose was

derived for vanishing thickness. For finite thickness, this slender-

body-theory result does not apply. Recent work at the Langley Laboratory
has solved the minimnm problem for finite thickness by using linearlzed

theory. The resulting nose shapes have finite slopes at their maximum
diameters.

Another indication that noses with finite slope at maximum diameter

can have lower drag than noses with zero slope at maximmn diameter is

shown by some results for a family of noses generated by parabolic arcs.

In figure 5 the nose pressure drag coefficient is plotted against the

shape parameter K which is related to the slope of the nose at maximum

diameter. For K = l, the parabolic nose has zero slope at maximum

diameter. Reducing K gives slope at maximum diameter and for K = O,
the result is a cone. Both hellum-gun tests at M = 1.2 and second-

order theory at M = 1.4 show the same trend; therefore, minimum drag

in the vicinity of K = 0.7 is indicated. This result indicates that,
for parabolic noses, removing the restriction of zero slope at maximum

diameter has resulted in a reduction in nose drag. For complete bodies,

the reduction of nose drag by the use of such shapes may be offset by a

greater interference drag of the nose on the afterbody.

In order to obtain an explanation of this drag reduction, the
geometrical changes in the noses with a change in the shape parameter K

have been examined. Examination of the nose profile shapes and the nose

area distributions yielded no significant clues. However, the slopes of
the nose-area distribution curves give an important result as is shown
in figure 6.

The nondimensional slope of the nose area distribution is plotted

against nose station x/_ for a number of _lues of K. Note that in

going from K = 1.0 to 0.75, the peak slope of the area distribution

curve is reduced, whereas a further decrease of K to 0.5 and to 0

causes an increase in the peak slope; therefore, the lowest drag nose
has the lowest peak slope. In figure 5 is also shown the drag value

at M = 1.2 for the xl/2 nose, which had the lowest drag at low super-

sonic speeds of all the noses presented earlier. The slope of the area

distribution curve for the xl/2 nose is the lowest value possible and

is constant as is shown in figure 6. Thus, from this experimental and

theoretical study of the effect of nose shape on drag, the peak slope of

the area distribution curve is seen to be an important parameter which

influences the drag at low supersonic speeds. This parameter has less

importance at higher Nach numbers since the x3/4 nose with a relatively

high peak slope had the least drag at M = 2.

ee

A correlation of the peak drag of bodies using as part of the correla-

tion parameter a function which is proportional to the slope of total body
area distribution curve has be
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Figure 7 shows 39 body shapes included in the drag correlation for

smooth bodies. The bodies have different fineness ratios, maximum-diam-

eter locations, base sizes, and profile shapes. In figure 8 the peak

pressure drag coefficient is plotted against a shape parameter which

includes the function f which is related to the slope of the body area

distribution curve, the base diameter ratio, and an effective body fine-

ness ratio, which neglects any parallel portion of the body. The neglect

of this cylindrical section presupposes small interference effects between

the nose and afterbody. The drags of all the bodies are from free-flig_

model tests at high Reynolds numbers so that the flow is turbulent at

both subsonic and supersonic speeds. The peak pressure drag was obtained

by taking the difference between the peak total drag and the subsonic

drag. For bodies having base areas greater than 20 percent of the maximum

area, the drags were corrected for base pressure. Fin drag was subtracted

for all models. The peak pressure drag correlates well by using this

correlation parameter and indicates that for these body shapes the inter-

ference drag is small. The one body for which the correlation is poor

has a low-fineness-ratio, highly convergent afterbody. This correlation

is similar to a transonic drag correlation made by the Fort Worth Division

of Convair in that the slopes of the area distributions are weighted in

the same manner.

Since the correlation appears good, one would obviously seek low

drag, for a given fineness ratio, by minimizing the quantity

f - 2 - _ . However, this minimization cannot be done directly since

base drag must be included and the proper combination of base size and

afterbody length must be found for low drag.

Figure 9 shows the results of some tests (ref. 2) in which the after-

body drag included both afterbody pressure drag and base drag. The tests

were made with free-flight models flown from the helium gun. The noses

on all the models were of high fineness ratio to minimize the interference

of the nose on the afterbody. The stabilizing fins were thin and swept

back to reduce the interference drag between the fins and the afterbody

and to minimize the effect of the fins on the base pressure. At M = 1.05,
the test Reynolds numbers for all models were over 8 × 106; at these

Reynolds numbers and with the presence of the fins, the flow at the base

is turbulent and thus the results are representative of full-scale values.

Twelve bodies had parabolic afterbodies of three fineness ratios and four

base sizes, whereas four additional models had conical afterbodies. In

the left-hand plot of figure 9 at M = 1.05, the pressure plus base drag

coefficient of the afterbody is plotted against the base radius ratio

rb/rma x for the three afterbody fineness ratios. The plot shows that,

as the afterbody fineness ratio increases, the base size for minimum drag

approaches zero. The right-hand plet shows the base size for low drag

against afterbody fineness ratio. It can be seen that the three points

fall on a straight line through rb/rma x = l, which corresponds to a

J
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conical boattail angle which is constant and equals 4.5 °. This angle

of 4.5 ° corresponds with previous ballistic experience. Since the after-

bodies have bases at fineness ratios below 6, any jet flow through the

base must not cause higher base drag. This effect of the jet on base

pressure is discussed in the paper by Edgar M. Cortright, Jr., and Fred D.
Kochendorfer.

By using this plot of base size for low drag against afterbody _/d

in conjunction with the peak-drag correlation parameter, a series of

bodies have been designed which should have low drag based on body frontal

area at M = 1.05. The bodies had profiles of the xl/2 shape with

maximum diameters located so as to minimize the correlation factor f

for a given base size.

However, drags of these supposedly reduced drag bodies were no lower

than those of the lowest drag parabolic bodies presented in figure 1. The

drag reduction indicated by the correlation parameter therefore was not

realized. A comparison of the peak pressure drags of two of these bodies

with the drags predicted by the correlation is presented in figure lO.

As indicated by the vertical distance between the mean llne from the

correlation and the data points, the predicted drags are 40 to 60 percent

below the actual values. It is felt that this difference is due to inter-

ference between the nose and afterbody components. The 39 bodies for which

the data correlated well had either zero slope of the nose at maximum

diameter or had finite slope followed by a long parallel portion; as a

result, the interference drag was small. However, for these two models,

the nose with finite slope at maximum diameter was followed by the after-

body which also had finite slope at maximum diameter. In any event the

correlation should be used with caution in designing low-drag bodies for

body shapes for which the interference drag can be high. A qualitative

estimate of the interference drag between the nose and afterbody is given

in a recent paper by Fraenkel (ref. 8).

Up to this point only smooth bodies have been discussed. Designing

an airplane to a good area distribution, however, is difficult and bumps

may occur in the area distribution curve. Figure ll shows the area dis-

tributions of twelve bumpy bodies which were equivalent bodies of air-

plane configurations. In order to get a rough indication of the effects

of the bumps on the drag, a comparison of the drag for each model with

that for a parabolic body having the same length, maximum diameter,

maximum-diameter location, and base size was made. Figure 12 shows a plot

of the measured peak pressure drags of the twelve bumpy bodies against

the peak pressure drags of the corresponding parabolic bodies, calculated

by using the correlation shown earlier. The vertical distance from the

dashed line to the data point represents the drag increment due to the

bump. Except for one case, the drags of the bumpy bodies are from about

20 to 60 percent greater than for the parabolic bodies. The one case for

which the drag of the bumpy lower probably results from the
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drag of the bumpy body being low as a result of separation of flow over

the afterbody, and, of course, the calculation of the parabolic-body

drag does not account for this effect.

Since the effects of the bumps can be large, it is of interest to see

whether the peak-drag correlation for smooth bodies will hold for bumpy

bodies.

Figure 13 shows the peak drag correlation for the twelve bumpy bodies.

The peak pressure drag was obtained in the same manner as for the smooth

bodies except that an additional correction was made for bodies with for-

ward facing steps in the area distribution curves. It was assumed that

the pressure over the step area corresponded to the pressure rise through

an oblique shock ahead of a two-dimensional forward facing step as given

in a recent paper by Love (ref. 3). The peak drags for the bumpy bodies

show the same trends as for smooth bodies; however, the scatter about the

mean curve is much greater. Again, two bodies with highly convergent low-

fineness-ratio afterbodies do not agree with the correlation.

The drag rise Mach numbers for these twelve bodies followed the same

trend as for the parabolic bodies shown earlier. The Mach numbers for

peak drag were more complex, being more a function of detail nose geometry,

than for the smooth bodies.

In conclusion, first, largest reductions in drag are possible through

increases in both total body fineness ratio and the fineness ratio of the

component parts. Second, the drag rise Mach number is dependent mainly

on the shortest body component fineness ratio, whereas the Mach number

for peak drag is a function of nose fineness ratio and shape. Third,

the peak drags of smooth bodies and bumpy bodies can be correlated by

using a simple parameter which depends only on body shape if the inter-

ference drag is small.
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DRAG DUE TO LIFT AT MACH NUMBERS UP TO 2.0

By Edward C. Polhamus

Langley Aeronautical Laboratory

INTRODUCTION

The previous papers have shown that, if the "area rule" is utilized

properly, it is possible to obtain values of zero-lift drag which, for

a wide variety of wing-fuselage configurations, approach that for the

basic fuselage alone. This fact makes the selection of a wing somewhat

less dependent on its zero-lift drag and therefore allows a wider range

of wings to be considered with regard to other problems. The purpose

of this paper therefore is to discuss the effect of wing geometry on the

drag due to lift and methods of reducing the drag at lifting conditions.

In figure 1 a typical variation of the drag with lift coefficient

for a plane, or flat, wing is shown by the solid line on the left-hand

side of the figure. For a plane wing the minimum drag occurs at zero

lift and theoretically has a parabolic shape with the increment due to

lift AC D equal to a constant times the lift coefficient squared. In

general, the data for the wings presented in this paper were fairly

linear plotted against CL2 up to lift coefficients of about 0.3 and

therefore the slope 2CDICL 2 will be used to describe the drag-due-to-

lift characteristics of plane wings in this lift range. For a cambered

or cambered and twisted wing the drag curve, as shown by the dashed line,

does not have its minimum at zero lift and therefore the drag polars will

be used to describe the characteristics of this type of wing.

Now, if viscous forces are neglected, the drag due to the lift can

be divided into two components - a thrust component of the suction force

caused by the flow about the nose of the airfoil, and a drag component

of the normal force. For a two-dimensional wing these two components

exactly balance each other; however, for a three-dimensional wing the

drag component of the normal force is greater than the thrust component

of the suction force, since a higher angle of attack is required to

develop the same lift, and an induced drag results. At subsonic speeds

the rate of change of the induced drag with lift squared can be approxi-

mated by 1/_A as illustrated in the bottom part of the right-hand side

of figure 1. Additional drag also occurs if the suction force is not

fully developed at the leading edge. For the extreme case of zero suc-

tion the drag due to lift is equal to the component of the normal force,

and the rate of change is therefore equal to the reciprocal of the
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lift-curve slope as illustrated in the top part of the figure. The

drag curve of a wing usually lies somewhere between these two extremes

and its relative position between these two limits is dependent to a

large extent on the amount of suction developed at the leading edge and

is therefore a function of such parameters as Reynolds number, Mach num-

ber, thickness, and leading-edge radius. The two limits, of course, are

primarily a function of plan form and Mach number.

EFFECT OF REYNOLDS NUMBER

Figure 2 shows the effect of Reynolds number on the drag due to

lift of an aspect-ratio-2 delta wing having an NACA 0005-63 airfoil

section (ref. i and unpublished data). The results are presented in

the form of the drag-rise parameter Z_CD/CL 2 against Reynolds number
l

for several Mach numbers. Also shown are the subsonic and the M = 1. 7

theories for full leading-edge suction and the values for zero suction

given by I/CL .

The results indicate that at a Mach number of 0.25 there is a

rather large increase in drag due to lift with decreasing Reynolds num-

ber but that as the Mach number increases the effect of Reynolds number

diminishes and is relatively unimportant at a Mach number of 1.7. The

increase with decreasing Reynolds number is probably due in part to the

fact that the combination of low Reynolds number and a relatively sharp

leading edge is conducive to leading-edge separation resulting in a loss

of leading-edge suction. In addition, a part of this variation is

probably due to the fact that at low Reynolds numbers the transition

point moves forward with increasing lift resulting in an increase in

viscous forces with lift. The decreasing effect of Reynolds number

with increasing Mach number is due to the fact that the difference

between the theory and the zero-suction case decreases with increasing

Mach number and the fact that the flow about the leading edge is

affected by compressibility. It should be pointed out that, while the

Reynolds number based on the mean aerodynamic chord was used here to

define more clearly the variation with Reynolds number for a given wing 3

it appears that the drag due to lift at a given Mach number is more

dependent upon the Reynolds number based on leading-edge radius. A

recent correlation (ref. 2) based on this parameter succeeded in bringing

the drag-due-to-lift parameter into fair agreement for a large number of

aspect-ratio-2 delta wings having various airfoil sections. It should

also be pointed out, however_ that, for plan forms where compressibility

effects are a function of thickness ratio or leading-edge radius, corre-

lations based on the leading-edge Reynolds number would not be expected

to bring the data into agreement at all Mach numbers.
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EFFECT OF THICKNESS

Figure 3 illustrates the effect of wing thickness ratio on the drag-

due-to-lift factor fo_ unswept wings of aspect ratio 4 at Reynolds num-

bers of approximately 4 × lO 6 (refs. 3, 4, and unpublished data from the

Langley 16-foot transonic tunnel). In addition to the experimental data,

the theory for full suction is also shown. It will be noted that at sub-

sonic speeds a decrease in thickness ratio from 8 percent to 4 percent

increased the drag-due-to-lift factor; for example, at a Mach number

of 0.6 it was increased by approximately 60 percent. This increase with

decreasing thickness ratio is probably due to the fact that the 4-percent-

thick airfoil section has a considerably smaller leading-edge radius and

therefore develops less leading-edge suction. However, it will be noted

that as the Mach number is increased the curves tend to converge and at
a Mach number of about 0.88 there is little effect of thickness. This

is due to the fact that, although the thick wing develops more suction

at low speeds, the effect of compressibility on the flow about the

leading edge is greater than for the thin wing. Above a Mach number

of 0.88, the 4-percent-thick wing has considerably less drag due to lift

than the 6-percent- and 8-percent-thick wings due to the fact that in

this Mach number range the resultant force is normal to the wing chord,

and since the thin wing has the higher lift-curve slope it has the lower

drag due to lift. This is illustrated by the two dashed curves repre-

senting the reciprocal of the lift-curve slope for the 4-percent- and
6-percent-thick wings.

Figure 4 shows the effect of thickness on the drag due to lift of

a delta wing of aspect ratio 2 at a Reynolds number of 3 x lO 6 (ref. 1).

At subsonic Mach numbers it will be noted that the results are similar

to t_hose for the unswept wings (fig. 3) with the thin wing having the

highest value of drag due to lift. However, aE the higher Mach numbers

the effect of thickness did not reverse for the delta wing as it did

for the unswept wing and the thin wing still had the highest drag due

to lift. It will also be noted that even at the highest Mach number

tested the drag is lower than the reciprocal of the lift-curve slope,

an indication of some suction being developed. This is due to the fact

that the Mach number normal to the leading edge of this wing never

exceeded a value of about 0.80. The vertical dashed line represents

the free-streamMach number for which the Mach number normal to the

leading edge is equal to 0.9 which is approximately equal to the Mach

number of the unswept wings for the case of zero suction. In order to

indicate the variation with Mach number in the transonic range, the

results of a rocket-propelled model of similar plan formhaving a

thickness of 6_percent (ref. 5) is shown by the long and short dashed

curve.
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EFFECT OF LEADING-EDGE RADIUS

The effect of leading-edge radius on the drag due to lift of an

unswept wing (ref. l) is illustrated in figure 5. The wing had an

aspect ratio of 3, a taper ratio of 0.39, and a thickness of 3 per-

cent and was tested with a biconvex section and with a biconvex sec-

tion modified with an elliptical nose having a radius of 0.045 percent

of the chord. It will be noted that the results are similar to those

obtained in the thickness investigation, with improvements with

increasing leading-edge radius occurring only at subsonic speeds. It

should be pointed out that the two curves are coincident at supersonic

speeds.

Figure 6 presents the results obtained on a 45 ° swept wing of

aspect ratio 4 which was tested with several modifications to the basic

NACA 65A006 airfoil section in the Langley high-speed 7- by 10-foot

tunnel. The three configurations tested were a sharp edge having zero

radius, the normal radius of 0.24 percent chord, and a radius of

0.72 percent chord. Inasmuch as only a limited Mach number range was

covered in these tests, the results are presented as 2_ D plotted

against CL at a Mach number of 0.90. The results indicate that no

improvement occurred with increase in the leading-edge radius at this

Mach number.

EFFECT OF ASPECT RATI0

Figure 7 illustrates the effect of aspect ratio on the drag due to

lift through the Mach number range. The wings were of delta plan form

and 3 percent thick and had aspect ratios of 2 and 4 (ref. 1). The

results indicate, as would be expected, that the higher aspect ratio

has the lower drag due to lift throughout the Mach number range. How-

ever, it will be noted that the difference between the two aspect ratios

is considerably greater than that indicated by the theory. It will be

noted, however, that the effect of aspect ratio on the reciprocal of the

lift-curve slope, which represents the zero-suction case, is approximately

twice that for the full-suction theory at subsonic speeds. The larger

effect of aspect ratio obtained in the experiments is therefore not sur-

prising since these thin wings lose a good portion of suction.

EFFECT OF SURFACE SHAPE

The previous figures have illustrated the effect of various parameters

on the drag due to lift of planar wings, and have shown that, in general,
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the drag due to lift is considerably higher than the theoretical values

due largely to separation at the nose and the accompanying loss of

thrust. However, a theoretical study by Jones (ref. 6) has shown that

an effective leading-edge thrust can be obtained by cambering and

twisting the wing.

Figure 8 presents the results of cambering and twisting a 45 ° swept

wing of aspect ratio 4 (ref. 7 and unpublished data from the Langley

8-foot transonic tunnel and the low-turbulence pressure tunnel). On the

left-hand side of the figure the results are presented for the case of

the cambered and twisted wing having 4.5 ° incidence at the fuselage

which results in low fuselage angles at moderate lift coefficients. The

results are presented as a plot of CD against CL at a Mach number

of 0.9 for the plane wing at zero incidence, for the wing cambered and

twisted for a uniform load distribution at a CL of 0.4 and M = 1.2

(c = 4.5o), and for the wing cambered and twisted for a triangular span

load and a rectangular chord load at a CL of 0.4 and M = 0.9 (c = 13 °).

The triangular span load of the latter case was used in an attempt to

improve the pitching-moment characteristics. The results indicate large

increases in drag for both the camber and twist distributions. However,

on the right-hand side of the figure, results are presented for the wing

cambered and twisted for a uniform load tested on a slightly different

fuselage but having approximately zero incidence at the fuselage. These

results indicate substantial reductions in drag above a lift coefficient

of about 0.15 for the cambered and twisted wing. For the case of zero

incidence the fuselage is developing lift at the design condition and

therefore the wing-fuselage combination represents the wing alone for

which the camber and twist were designed considerably better than the con-

figuration having 4.5 ° incidence which results in low fuselage angles

in the moderate lift range.

Figure 9 presents the results of an aspect-ratio-2 delta wing tested

with three different surface shapes (ref. 1): a planar surface, a sur-

face cambered and twisted for a trapezoidal spanwise load distribution,

and a surface which was planar over the inboard 80 percent of the local

semispans. This third surface was a modification of the surface required

for an elliptical span loading and was used in order to simplify con-

struction. It should be mentioned that the wing incidence was zero at

the plane of symmetry for all three cases. At a Mach number of 0.91,

it will be noted that both types of surface modification resulted in

improvements in the drag characteristics but that the simple nose camber

was superior below a lift coefficient of about 0.3. As the Mach number

increased the improvements diminished for both surfaces and at a Mach

number of 1.53 no improvement was obtained; however, less penalty occurred

for the simple nose camber.
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Figure lO shows the results obtained from tests in the Langley

8-foot transonic tunnel of a similar wing in which the extent of the

nose camber was varied. The wing had an aspect ratio of 2.2 and a

modified NACA 0004-65 airfoil section. Two nose cambers were tested

and both were of constant chord, one being 4 percent (modification A)

and the other 8 percent (modification B) of the mean aerodynamic chord.

The camber covering 4 percent of the mean aerodynamic chord was obtained

by shearing the ordinates so that the bottom surface was parallel to the

chord llne. The camber covering 8-percent of the mean aerodynamic chord

was obtained by extending the chord and displacing the leading edge an

amount equal to 1.3 percent of the longitudinal distance X from the

wing apex. This was a modification of the surface shape required for

an elliptical loading at a lift coefficient of 0.19 and was similar to

that presented in figure 9 except that it was of constant chord. On

the left-hand side of the figure drag polars are shown for the basic

wing and the two modifications at a Mach number of 1.O. The results

indicate that modification A (4 percent) had no effect on the drag

while modification B (8 percent) resulted in a substantial reduction in

drag except for an extremely small increase at zero llft. Although the

coefficients are based on the actual areas, it should be pointed out

that even the actual drag for a given lift is less for modification B

thsm_ for the basic wing. The effect of Mach number on the variation of

drag at a lift coefficient of 0.3 for the three configurations is shown

on the right-hand side of the figure. It will be noted that both modi-

fications resulted in improvements at the lower Mach number but that

modification A had no effect above a Mach number of about 0.90; however,

modification B resulted in improvements throughout the Mach number

range investigated.

°

EFFECT OF TRIMMING

In order to reduce the weight and zero-lift drag of an aircraft,

tailless configurations are sometimes used. However, since a tailless

design, in general, obtains its trim from a surface on the wing, large

deflections of this surface are required because of the short moment

arm. These large deflections, of course, result in additional drag

which could have an important effect on the performance. This is

especially true at supersonic speeds because of the increased stability

caused by the rearward movement of the wing aerodynamic center in going

from subsonic to supersonic speeds and the higher drag due to flap

deflection. Figure ll illustrates this effect of trimming on the varia-

tion of the drag with lift. The model was an aspect-ratio-2 delta wing

having an NACA 0009-63 airfoil and a constant-chord flap equal to l0 per-

cent of the wing mean aerodynamic chord (ref. 8i. At a Mach number

of 0.90, it will be noted that a positive flap deflection of 4° resulted

in a reduction in the drag due to lift. However, for a stable tailless

I
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configuration negative deflections are required to trim the airplane

through the positive lift range which results in an increase in the

drag due to lift. At a Mach number of 1.90, the increase due to

trimming the airplane is considerably greater than at 0.90 because

of the aforementioned increase in stability and drag due to flap

deflection at supersonic speeds.

7

EFFECT 0FAPPLICATION OF THE AREARULE

In the previous papers it was shown that indentations of the fuse-

lage according to the Mach number of 1.0 area rule resulted in large

decreases in the zero-lift drag of wing-fuselage combinations at tran-

sonic speeds. The question now arlses as to whether these benefits are

maintained under lifting conditions. Figure 12 shows the effect of a

Mach number of 1.O body indentation on the drag of a wlng-fuselage com-

bination. The wing had an aspect ratio of 4, 45 ° of sweep, a taper ratio

of 0.3, and an NACA 65A006 airfoil section and was tested in the Langley

8-foot transonic tunnel. The results are presented as total drag coeffi-

cient against Mach number for lift coefficients of 0 and 0.5 and indicate

that the large reductions in drag at transonic speeds due to body inden-

tation were to a large extent maintained in the lifting condition. At

supersonic speeds the Mach number 1.0 indentation had negligible effect

at either lift coefficients of 0 or 0.3.

Figure 13 shows the improvement in the maximum lift-to-drag ratio

associated with this application of the area-rule concept. The results

for both the basic configuration and the configuration with the indented

body are plotted against Mach number and it will be noted that, below

a Mach number of about 1.4, the lift-to-drag ratios were improved and at

a Mach number of 1.0 (the design condition) the increase amounted to

approximately 37 percent.

At the present time little has been done in attempting to develop

area distributions which might actually reduce the drag increment due

to lift. However, figure 14 presents the results of one such investiga-

tion conducted on a wing of aspect ratio 4 having 45 ° of sweep (ref. 9).

The basic body was cylindrical rearward of the wing leading edge and was

modified by several types of indentations. The first indentation,

designated by the letter _ in the figure, was symmetrical around the

fuselage and was determined by the Mach number 1.0 area rule. The other

two indentations tested were more abrupt indentations superimposed first

on the upper half _ and then on the lower half _ of the symmetrical

indentation. On the left-hand side of the figure the drag at zero lift

is presented against Mach number and it will be noted that all the modi-

fications gave about the same reduction in drag. On the right-hand part
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of the figure the same comparison is made for a lift coefficient of 0.3.
The results indicate that the symmetrical area-rule indentation resulted

in about the same reduction in drag as at zero lift which is consistent

with figure 12. However, when the more abrupt indentations were added,

additional reductions in drag resulted with the lowest occurring for the

indentation below the wing.

COMBINEDEFFECTS

At transonic speeds it has been shown that application of the area

rule and the use of camber and twist results in significant reductions

in drag. Figure l_ shows the effect of combining these two methods at

transonic speeds. The tests were conducted in the Langley 8-foot tran-

sonic tunnel on a model having 45 ° of sweep, an aspect ratio of 4, a

taper ratio of 0.6, and an NACA 65A006 airfoil section. The model was

tested (1) with the basic wing and body, (2) with the basic wing and

the body indented according to the area rule, and (3) with the wing

cambered and twisted for a uniform load at CL = 0.4 and M = 1.2 in

combination with the indented body. On the left-hand side of the fig-

ure drag polars are presented for the three configurations at a Mach
number of 1.0. It will be noted that indenting the fuselage resulted

in large reductions in drag throughout the lift range. Camber and twist

resulted in a rather large increase in minimum drag but resulted in

improvements above a lift coefficient of about 0.2. On the right-hand

side of the figure the maximum lift-to-drag ratios are plotted as a

function of Mach number. At a Mach number of 0.8 the improvement is due

mainly to the camber and twist and resulted in an increase from 13 to 17.

At a Mach number of 1.0, the improvement is due mainly to the body

indentation and resulted in an increase from about 7.5 to ll.5.

CONCLUDING REMARKS

In conclusion, it appears that Reynolds number has a rather large

effect on the drag due to lift of thin wings at low speeds but that this

effect decreases considerably with increasing Mach number.

Comparisons of wings of various thicknesses indicate that at sub-

sonic speeds an increase in thickness is beneficial, whereas, in general,

at transonic and supersonic speeds no gains and possible losses occur

unless the wing leading edge is highly swept which results in relatively

low subsonic speeds normal to the leading edge. Similar results are

indicated with regard to leading-edge radius.
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Although camber and twist are effective in reducing the drag due

to lift at the design condition_ providing the correct wing incidence

is used, it appears that simple nose camber will result in similar

gains with less penalty near zero llft.

The reductions in minimum drag associated with application of the

area rule by means of fuselage indentations are maintained in the lifting

condition and significant improvements in the lift-to-drag ratios result.

In addition, from preliminary tests, it appears that local modifications

to the fuselage indentations may result in additional reductions in drag

at lifting conditions.
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LONGITUDINAL CHARACTERISTICS OF WINGS

By Thomas A. Toll

Langley Aeronautical Laboratory

INTRODUCTION

The previous papers have summarized recent information relative to

the drag at zero lift and the variation of drag within the lower range

of lift coefficients. In considering the complete range of lift coef-

ficients for normal flight operations, the performance characteristics

and longitudinal stability are perhaps equally important factors in the

selection of the wing configuration. One objective of the designer can

be regarded as the achievement of the best possible compromise between

performance and stability over the ranges of Mach number and lift coef-

ficient that are likely to be encountered. This paper deals with various

approaches toward realization of this objective in so far as the wing cr

wing-fuselage characteristics are concerned. Cor_sideratlon is given only

to wings of 6-percent thickness or less.

SYMBOLS

A

%

Cm

L/D

M

R

b

C

r

wing aspect ratio

lift coefficient

pitching-moment coefficient

lift-drag ratio

Mach number

Reynolds number

wing span

local wing chord

mean aerodynamic chord

wing section leading-edge radius
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maximum thickness of wing section

distance measured rearward from leading edge of wing mean

aerodynamic chord to wing aerodynamic center

shift in longitudinal position of wing aerodynamic center at

low lift

change in longitudinal position of wing center of pressure

change in lateral position of wing center of pressure

wing taper ratio; ratio of tip chord to root chord

wing sweep angle measured with respect to quarter-chord line

wing sweep angle measured with respect to leading edge

deflection of leading-edge flap, measured in plane parallel to

plane of symmetry, positive when leading edge is down

RESULTS AND DISCUSSION

Wing Plan Forms

Wing plan forms which are representative of those in which interest

has been centered are shown in figure 1. The three wings at the left

have attracted considerable interest because of their attractive perfor-

mance capabilities. In general 3 these wings require some modification

or "fix" if satisfactory high-llft stability is to be attained. The

three composite wings shown at the center represent an approach toward

achieving good stability while maintaining the benefits of a moderately

high aspect ratio and at least a part of the benefits resulting from

large sweep. The wings at the right represent plan forms that might be

expected to avoid hlgh-lift stability problems through use of small sweep

angles.

Wings of Large Sweep

Basic characteristics.- The nature of the stability problem that

exists for wings of the type shown at the left of figure 1 is illustrated

in figure 2. Results for several such wings are published in references 1

to 8. The wing geometry and Reynolds numbers are given at the right of
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the figure. Each of these wings shows some pitching-moment instability

within the normal operating lift range. Although the magnitude of the

instability and the lift coefficient at which the instability begins vary

somewhat for the different wings, the most severe condition exists at a

Mach number of about 0.9 for each of these wings. At a Mach n_nber of 1.0

the stability problem is essentially eliminated for two of the wings and

is alleviated somewhat for the third. At supersonic speeds higher than

those considered in figure 2, the wing-fuselage normally does not present

a major stability problem. Of the plan forms shown in this figure, wings

having about the aspect ratio and sweep angle of the wing at the top have

received the greatest amount of attention with regard to means for improving

their behavior. The objective in the studies that have been made is not

necessarily the achievement of linear pitching-moment characteristics of

the wing-fuselage combination, since, when a tail is used, the additional

contribution of a tail generally is not linear. It is desirable however

to avoid abrupt changes in slope such as those shown in figure 2.

Before considering the effects of variations in the geometry of the

wing shown at the top of figure 2, it is appropriate to study the manner

in which aerodynamic characteristics are altered through application of

the area-rule concept in the design of the fuselage. The pitching moments

and lift-drag ratios obtained at Mach numbers of 0.9 and 1.0 for the wing

mounted on a cylindrical fuselage and on the fuselage modified by an

indentation in accordance with the area-rule concept are presented in

figure 3. (For additional details, see refs. 2 and 9)- The results at

M = 0.9 are representative of conditions in the subsonic speed range

where the indentation has little effect on the lift-drag ratio. The

results at a Mach number of 1.0 represent a transonic condition for which

the indentation provides an appreciable gain in lift-drag ratios. At

either _ch number, the effect of the indentation on pitching moments is

small and amounts primarily to a slight extension of the lift range before

instability begins, indentations _pplied to some other wing-fuselage

configurations have provided considerably larger performance gains than

that indicated here; however, the effect on stability still was small.

It should be pointed out that the lift-drag ratios presented in the

various figures contained herein should be interpreted only with respect

to the variables considered on a given figure, since the investigations

to be summarized employed different fuselage shapes and also differed in

certain other details.

In considering wings of the aspect ratio and sweep angle shown in

figure 3, the question arises as to whether benefits can be derived by

selecting some taper ratio different from the value of 0.6 used. Fig-

ure 4 presents results from reference 8 at Mach numbers of 0.8 and 0.91

for wings having taper ratios varying from 0.3 to 1.O. The assumed cen-

ters of gravity for these wings have been adjusted to give the same slope

of the moment curves for all wings near zero lift and at low Mach numbers.
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The moment curves show that high-lift instability occurs for all wings,

but that there is a progressive increase in the lift coefficient at

which instability begins as the taper ratio is increased from 0.3 to 1.0.

Essentially no change in the lift-drag ratios is indicated for these

wings over the range of taper ratios considered. These wings, however,

all were of 6-percent thickness. Since the taper-ratio-0.3 wing would

seem to be the most efficient structure, its thickness probably could

be reduced somewhat and some performance advantage thereby achieved at

transonic and supersonic speeds. This wing was selected as the basic

plan form for an extensive study of various modifications.

Modifications to swept win6s.- The effect of a variation in leading-

edge radius is compared in figure 5 with the effect of 6° droop of a

20-percent-chord leading-edge flap. The point symbols give results for

a sharp nose, for the normal nose of the basic 65A006 airfoil, and for

a nose having three times the radius of the nose of the basic airfoil.

The solid-line curves were obtained from reference i0 and represent

results obtained with the nose flap deflected 6° on the basic wing. At

the selected Mach numbers of 0.8 and 0.9 the variation in leading-edge

radius had no significant effect on either the stability or the lift-

drag ratios of this wing. Deflection of the leading-edge flap improved

the lift-drag ratios and extended the linear range of the pitching-moment

curves. The advantage of droop was smaller at the higher Mach number.

Some limited tests at transonic speeds (refs. Ii to 13) and at supersonic

speeds have indicated that only a very small advantage can be expected by

deflecting a leading-edge flap on a wing of the type used here.

The effects of le_ding-edge droop indicated in figure 5 also are

representative of effects resulting from camber, camber and twist

(refs. 14 and 15), and large-span slats. In general, such modifications

improve the drag characteristics and extend the linear range of the

pitching-moment curves but do not alleviate the instability at high lift.

More significant effects on stability at high lift have been

obtained by such devices as fences, leading-edge chord-extensions, and

notches in the wing leading edge. (See refs. 4, 5, and i0.) About the

same effect has been indicated (ref. 16) for external stores if they

are carefully positioned along the wing span. Each of these devices

appears to depend largely on an ability to upset the stability of the

leading-edge vortex that frequently exlsts on thin swept wings at moder-

ately high angles of attack. Any change in flow phenomena that destroys

the vortex will greatly decrease the effectiveness of these devices.

The effects of these devices on pitching moments result largely from

controlling the location at which stalling is initiated and not through

any appreciable reduction in the amount of separation. As would be

expected, therefore, such devices have little effect on drag

characteristics.

Q
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It has been shown in references I0 and ii that combining a leading-

edge chord extension with a full-span drooped nose flap permits both the

performance benefit of the nose flap and the stability advantage of the

chord extension to be obtained simultaneously. The effects of this com-

bination and of some additional modifications are shown in figure 6. The

results for the basic wing are given by the solid curves. Results for the

chord-extension combined with the deflected nose flap are given by the

short-dashed curves. Note the rather large gains in both stability and

lift-drag ratios that are obtained. The additional modifications con-

sisted of a wing cutout with refairing of the wing contour near the fuse-

lage intersection and a trailing-edge extension. These additional modi-

fications provided some additional control over the pitchlng-moments at

high lift but did not provide completely satisfactory stability at the

selected Mach numbers of 0.8 and 0.9. It is a point of interest that a

modification opposite to the wing cutout shown here -- that is, a forward

extension of the wing chord near the fuselage --has been found to aggra-

vate the high-lift stability problem (ref. 17, for example). A comparison

of the lift-drag ratios of the latter two modifications with those obtained

with only the nose flap and chord-extenslon shows that the trailing-edge

extension sometimes gave some improvement, but the leading-edge cutout

had an adverse effect. All three modifications provided improvements

over results obtained with the basic wing.

.m

Composite win6s.- A more extreme method of handling the stability

problem involves use of composite wing plan forms. In figure 7 results

for an M-wing_ a W-wing, and a plan form sometimes referred to as a
"cranked wing are compared with results for the basic 45 ° swept wing

from which the composite plan forms were derived. In order to facilitate

the comparison, the pitching-moment curves for all wings were adjusted to

the same slope near zero llft at Mach nmnber 0.8. The results indicate

that the M-wing at least offers an effective means for controlling high-

lift stability in the critical _ch number range near 0.9. Selection of

different Juncture locations or different sweep angles of the inboard

and outboard panels should make it possible to achieve additional improve-

ments in the shapes of the pitching-moment curves. It must be emphasized,

however, that the more favorable stability characteristics obtained with

these plan forms again result from controlling the locations at which

flow separation is initiated and not from any material decrease in the

amount of separation. Tuft surveys indicate separation at the root and

tips of the M-wing and at the panel junctures for the W and cranked wings.

At the selec%ed Mach numbers of 0.8 and 0.9 the lift-drag ratios for the

M-wing compare favorably with those of the basic swept wing. It is not

known, however, to what extent the characteristics of the composite wings

might be improved by such devices as nose flaps or camber. Some minimum

drag penalty has been indicated for M- and W-wings at transonic speeds;

however, no penalty has been noted above a Mach number of about 1.25.

(See ref. 18.)
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Modifications to triangular wings.- Experience in applying modifica-
tions to triangular wings so far has been quite limited. The effects of

one modification - a leading-edge chord-extension - are shown in figure 8.

The characteristics of the basic model without chord-extensions are given

at Mach numbers of 0.85 and 0.95 by the solid-line curves. The insta-

bility which covered only a small lift-coefficient range was essential_r
eliminated by the chord-extensions (dashed curves). The results shown

here are representative of the entire Mach number range for which insta-

bility of the basic model existed. In this case the effect of the fix

might be regarded as being complete; however for some other triangular-

wing models having different fuselage configurations, this type of fix

did not completely eliminate the instability. The effect of the modifi-

cation on lift-drag ratios generally has been found to be insignificant,

as is indicated in this figure. It has not yet been clearly established

whether the stability advantages of modifications such as the chord-

extension and the performance advantage of a cambered leading edge can

be obtained simultaneously by combining the two devices.

Wings of Small Sweep

Considerations regardin_ use of small sweep.- In considering the

possible use of straight wings or wings of reduced sweep as a means of

avoiding stability difficulties, the possibility of a penalty in perfor-

mance is of course of paramount interest. Whether such a penalty exists

can be determined only as a result of detailed design studies with con-

sideration given to aerodynamic data of the type discussed in the pre-

ceeding papers and in references 19 to 24.

Another factor that needs careful consideration is the magnitude of

the shift in aerodynamic center of these wings while passing from sub-

sonic to supersonic speeds. An attempt to correlate this shift for thin

wings in the region of zero lift is indicated in figure 9. The incremen-

tal change in aerodynamic-center position (defined as the difference

between maximum forward and maximum rearward aerodynamic-center positions

below a Y_ch number of 1.15) is plotted against sweep angle. Results are

considered for aspect ratios of 2, 3, 3.5, and 4. Wings having values of

the taper ratio parameter h less than 0.4 are indicated by open symbols

and wings with h greater than 0.4 are indicated by solid symbols. For

the range of plan forms considered_ there appeared to be very little cor-

relation with aspect ratio and_ in general_ little correlation with taper

ratio_ although for small sweep angles there is an indication of a larger

aerodynamic-center shift for the larger taper ratios. A fairly definite

trend with sweep angle results and indicates an increase in the

aerodynamlc-center shift by about 6 percent of the chord as the sweep

angle is reduced from 45 ° to 0 o.
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Straight winss.- The stability characteristics of two straight wings

are shown in figure i0. The results for the aspect-ratio-4 wing shown at

the top were obtained in the Langley 16-foot transonic tunnel at a Rey-

nolds number of 6 X 10 6 • Results given in the bottom plot are for an

aspect-ratio-3 wing tested in the Ames 2- by 2-foot transonic tunnel at

a Reynolds number of 1.5 million. The characteristics of these wings

are generally similar. Nonlinearities again appear in the pitching-

moment curves, particularly at Mach number 0.9. In these cases, however,

difficulties may result from excessive stability, rather than from a loss

in stability, at high lift. As was indicated for the other wings, a

final evaluation depends on the stability characteristics that are

obtainable with the horizontal tail installed.

Selection of Sweep An_le.- With regard to the wing contribution to

stability, it would be desirable to indicate some quantitative relation

between pltching-moment nonlinearities --whether they are stabilizing

or destabilizing- and the wing geometry. Results of an attempt to form

such a relation are indicated on figures ii and 12. The analysis has

been made in terms of the center-of-pressure change with increasing lift.

Evaluations of this change were made by subtracting center-of-pressure

locations at low lift from the center-of-pressure locations at a lift

coefficient of 0.6 and at the maxim_mn lift coefficient. Results from a

systematic series of wings tested on a transonic bump through maximum
lift and to Mach numbers of about 1.2 at a Reynolds number of 1.0 × 106

were used in the analysis. The six wings considered on figure ii had a

taper ratio of 0, an aspect ratio of 4.0, and sweep angles varying from

-14 ° to 45 °. Figure 12 gives results obtained with the same wings, but

with the tips clipped to give an aspect ratio of 3 and a taper ratio of

0.14.

Since the wings were tested as reflection-plane models 3 both the

longitudinal change (_)and the lateral change- "tZ_YcP_ in center of
b121

pressure could be determined. The results show that, in general, the

longitudinal center-of-pressure chs_nges at a Mach number of i.i were

considerably smaller than the changes at a Mach number of 0.9. Fairly

large lateral changes occurred at both Mach numbers, however. Whether

a rearward or a forward change in wing center of pressure is desired

for a particular design will depend on factors not dealt with in this

paper; however, for purposes of illustration, it is of interest to con-

sider the case for which a minimum change in longitudinal position of

the center of pressure is desired. For the pointed wings of aspect

ratio 4, a sweep angle in the vicinity of 20 ° or 30o would be selected

to meet this requirement. For the clipped wings of aspect ratio 3, a

sweep angle between 30 ° and 40 ° is indicated. It is important to note

that for either wing series, the wings that would be expected to give

the smallest longitudinal changes in center of pressure would experience

appreciable inward changes in center of pressure at a Mach number of 0.9,
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even at the relatively low lift coefficient of 0.6. Such inward dis-

placements are associated with tip stalling and a reduction in the effec-

tive span of the trailing vortex sheet. This may cause erratic changes

in downwssh as well as buffeting and erratic changes in the lateral sta-

bility derivatives.

Wings of intermediate sweep.- The charts of figures ii and 12 are

of limited use for general design purposes in that they deal with only"

two specific series of wings; also, the test Reynolds number was only

1.0 × 106 • It should be of interest to inspect the stability character-

istics of two wings tested at higher Reynolds number but having aspect

ratios and sweep angles such that small changes in center of pressure

would be expected. The results are given in figure 13. Both wings are

of aspect ratio 3. One wing, having 37 ° sweep and a taper ratio of 0.2,

conforms closely to the conditions for minimum change in center of pres-

sure indicated by figure 12. The other wing, because of its smaller

sweep angle, would be expected to experience some increase in stability

at high lift. Results for both wings show some jogs in the pitching-

moment curves, particularly at _ch numbers near 0.9. In general_ how-

ever_ the nonlinearities are smaller than those indicated for most of

the wings discussed previously, and the major trends are about as would

be expected from the preceding charts.

°

CONCLUDING REMARKB

In summary 3 this paper has treated three approaches to the problem

of wing selection. The first involves use of modifications or "fixes"

to correct the basic instability of wings with relatively large sweep

angles. Such modifications_ if carefully tailored to the wing being

considered_ may provide marked improvements in both stability and per-

formance at the lower subsonic _,_ch n_nbers; however_ in general, there

is no assurance that the modifications will be sufficiently effective,

particularly at Mach numbers near 0.9. The other two approaches involve

use of composite wings - particularly the M-type plan form - or wings of

intermediate sweep. These latter methods provide a more positive means

of dealing with the stability problem. The methods considered do not

necessarily provide alleviation of flow separation at high lift, and

therefore problems involvin_ buffeting_ erratic do_ash_ and erratic

lateral-stability derivatives may exist even though the static longi-

tudinal stability of the wing-fuselage combination is apparently good.
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WING PLAN FORMS
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AERODYNAMIC CHARACTERISTICS OF LOW-ASPECT-RATIO WINGS

AT HIGH SUPERSONIC MACH NUMBERS

By Edward F. Ulmann and Mitchel H. Bertram

Langley Aeronautical Laboratory

This paper presents some recently obtained data on the aerodynamic

characteristics of low-aspect-ratio wings at supersonic Mach numbers

of 4.04 and 6.9 and discusses some new methods of predicting the lift

and drag of such wings. Data on lifting wings in the Mach number range

above 2.9 are not plentiful and most of the available data may be found
in references 1 to 8.

The plan forms, airfoil section, and thickness ratios of the wings

tested are given in figures 1 and 2. The wings shown in figure 1 all

have double-wedge airfoil sections, with constant thickness ratios over

the wing span. The wings of figure 2 are all of the sEume family, having

hexagonal airfoil sections with constant thickness outboard to the

56-percent-semispan station and double-wedge sections with maximum

thickness at the 69.2-percent-chord station from there to the wing tips.

Exceptions to this are the two delta wings which have rounded leading

edges and the clipped delta wings. The wings were selected to extend

the Mach number range of data on wings previously tested and to inves-

tigate the effects of changes in the aspect ratio of delta wings, changes

in wing plan form, and changes in airfoil section and thickness. The

models tested at Mach number 6.9 in the Langley ll-inch hypersonic tun-

nel were sting-mounted, and lift and drag data were obtained. The models

tested at Mach number 4.04 in the Langley 9- by 9-inch Mach number 4 blow-

dowo jet were tested as semispan models extending out into the stream

from a boundary-layer bypass plate; lift, drag, pitching moment, and

wing-root bending moment were measured.

The aerodynamic characteristics of the double-wedge section delta

wings will be considered first. A sunmmmy of the lift-curve slopes at

zero angle of attack for the double-wedge section wings of this investi-

gation is presented in figure 3, together with some data on delta wings

of the same section from the Langley 9-inch supersonic tunnel at Mach

numbers 1.62, 1.93, and 2.40. The ordinate in figure 3, the ratio of

the delta-wing lift-curve slope to the linear-theory two-dimensional

lift-curve slope, and abscissa, the ratio of the tangent of the semi-

apex angle of the wing to the tangent of the free-stream Mach angle,

are basic parameters obtained from the linear theory of delta wings

(refs. 9 and 10). Tangent ratios less than 1 represent wings with

subsonic leading edges, whereas at tangent ratios greater than 1 the

wing leading edges are nominally supersonic, but may be actually
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subsonic because of shock detachment due to wing thickness. The shaded

region in figure 3 includes points obtained in various other facilities

throughout the country from tests of delta wings with thickness ratios

equal to or less than 3 percent at Mach numbers from 1.2 to 2.4 (refs. ii

to 16). In the past, the analysis of delta-wing data for Mach numbers

below 2.5, plotted to the variables of figure 3, has led to several con-

clusions: first, that delta wings having the same section and the same

tangent ratio have lift ratios which are relatively independent of Mach

number) and, second, that the linear theory gives a fairly accurate

prediction of the lift of thin delta wings at low values of the tangent

ratio, but overestimates the lift at tangent ratios from about 0.7 to 1. 5 .

As wing thickness ratios increased, the lift-curve slopes were found to

become increasingly less than the linear-theory values. The only theo-

retical methods which take leading-edge shock detachment into account,

and thus might be expected to give better predictions for the lift of

delta wings in the shock-detached region, are methods using conical

characteristics solutions, such as that of Maslen (ref. 17). These

nonlinear methods are very laborious and simpler methods are desirable.

The data from the tests of double-wedge section delta wings at Mach

numbers 4.04 and 6.9 (fig. 3) indicate that these linear-theory param-

eters are not adequate for correlating higher Mach number data, since

the high Mach number tests gene_ally gave higher lift ratios than the

low Mach number tests. In the region of attached leading-edge shocks,

it was found that the lift-curve slopes were very close to the shock-

expansion two-dimensional values for the wing airfoil sections.

Accordingly, the data were plotted (fig. 4) as the ratio of the experi-

mental lift-curve slope to the two-dimensional shock-expansion lift-

curve slope for the streamwise airfoil section of the wing. In general,

lift ratios close to i were obtained at high values of the tangent ratio,

indicating that the two-dimensional shock-expansion theory gives good

predictions of lift-curve slopes of delta wings when the leading-edge

shock is attached.

At values of the tangent ratio close to those for shock detachment,

the experimental lift ratios dropped abruptly below i, as was noted at

the lower Mach numbers by Love (ref. 18). Some simple method of pre-

dicting the variation of lift ratio in this region is desirable. Since

the predictions of the linear theory are the same as those of the char-

acteristics theory for wings of zero thickness, it was assumed that the

lift of these finite-thickness wings in the shock-detached region varies

in a manner similar to linear-theory prediction for the zero-thickness

wing. The similarity constant was determined by the shock-detachment

value of the tangent ratio for each wing. Using these constants, curves

were drawn from the shock-detachment points to predict the wing lifts,

as shown in figure 4. This modification to the linear theory predicts

the experimental results with a maximum error of 5 percent for the five

Mach numbers shown in figure 4. When extended to the prediction of

lift-curve slopes of arrow- and diamond-plan-formwings tested at Mach
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number 4.04by modifying the results of Puckett and Stewart's theory

(ref. 19), given in chart form in reference 20, the method gave predic-

tions within 7 percent of the experimental values for one arrow wing

with a single-wedge section and one diamond-plan-formwingwith a

hexagonal section.

The previous figures have presented data on lift-curve slopes at

zero angle of attack. Figures _ and 6 present typical lift curves for

double-wedge-section delta wings at Mach numbers 4.04 and 6.9. At both

Mach numbers the curves are essentially linear at low angles of attack.

Nonlinearities are evident at angles of attack above approximately 6° ,

especially at Mach number 6.9. An estimate of the lift of the wing

having a 30 ° semiapex angle at Mach number 6.9 at lO ° angle of attack

would be 20 percent low if based on the lift-curve slope at 0° angle

of attack. The experimental data for the wings of figures 5 and 6 follow

very closely the predictions of the shock-expansion two-dimensional theory

for the streamwise airfoil sections of the wings at both Mach numbers, as

long as the leading-edge shock is attached. When the angle of attack

becomes so large that the leading-edge shock detaches, the experimental

values begin to fall below the shock-expansion theory. This is especially

noticeable at Mach number 6.9, where an abrupt change in the slope of the

lift curves occurs at the angles of attack at which leading-edge shock

detachment is predicted theoretically. At Mach number 4.04, the data

for the _-percent-thick wing, which has _u attached leading-edge shock,

agree very well with the shock-expansion theory, whereas the experi-
mental lift coefficients for the much blunter 8-percent-thick wing,

which has a detached shock at zero angle of attack, fall below the theo-

retical values. The shock-expansion theory gives predictions of the

lifts of the double-wedge wings tested within about 2 percent of the

experimental value at Mach number 4.04 and within 5 percent at Mach

number 6.9, as long as the angle of attack is below that for leading-

edge shock detac.hment.

The next section of this paper discusses methods of predicting and

correlating the drag of low-aspect-ratio delta wings. The prediction of

drag results involves, of course, three factors: predictions of friction

drag, minimum pressure drag, and drag due to lift. In order to make a

theoretical prediction of friction drag, predictions of the type of

boundary layer and the location of boundary-layer transition must be

made. Satisfactory theoretical methods of predicting boundary-layer

transition on wings are not available at present, but the transition

point, the nature of the boundary layer, and the value of the friction-

drag coefficient can often be determined by experimental means in wind

tunnels or in free flight. For example, an experimental value of the

friction-drag coefficient at Mach number 4.04 was obtained by plotting

the drag coefficients of wings having the same plan form and section

against the square of the wing-thickness ratio and making a straight-line

extrapolation through the experimental points to the zero-thickness
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ordinate. A value of 0.0036 was obtained. Furthermore, the boundary-

layer-transition lines on these same wings were determined by fluorescent-

lacquer tests and, by using this information and by assuming no variation

of CDf with wing thickness ratio, estimates of the friction-drag coef-

ficients of the wings were made using Van Driest's value of laminar skin-

friction-drag coefficient (ref. 21), corrected for differences in stream

static temperature (ref. 22), and the Frankl and Voishel extended value

of the turbulent skin-friction-drag coefficient (ref. 23). An estimated

value of 0.0033 was obtained by this method, which compares favorably with

the experimental value of 0.0036. The experimentally determined value of

the skin-friction drag coefficient was used to obtain the minimum pressure-

drag coefficients at Mach number 4.04 used in the following discussion.

Theoretically determined friction-drag coefficients were used at Mach

number 6.9.

The next component of wing drag which will be considered is the

minimum pressure drag. The linear theory for delta wings as derived by

Puckett (ref. 24) indicates that all delta wings with double-wedge air-

foil sections having a given maximum-thickness location and the same

CDPmi n _ M2 - 1
value of the tangent ratio will have the same value of

(t/c) 2

the ordinate of figures 7 and 8, for all thickness ratios and Mach num-

bers. Thus, the linear theory for each family of delta wings investi-

gated appears as single curves in figures 7 and 8. The predictions of

linear theory are rather poor for the wings shown in figure 7; however,

all the experimental data for the wings with maximum thickness at 50 per-

cent chord, wings 213' 5, and 8 percent thick, tested at Mach numbers

from 1.62 to 6.9, fall very nearly on one curve, showing that these

parameters successfully correlate experimental data for this family of

wings. This result is found only for wings with sectionsthat are sym-

metrical about the midchord point, since the higher order effects are

small for such wings. For other wing sections with maximum thicknesses

ahead of or behind the 50-percent-chord point, the higher order terms

become important and the theory indicates Mach number effects in the

shock-attached region which cannot be correlated by these parameters.

This point is illustrated by the results obtained from the wings

with maximum thickness at 18 percent chord presented in figure 8. The

predictions of the linear theory are poor for these blunt wings at low

values of the tangent ratio due to the transonic nature of the flow

over the wings; however, the lower Mach number data correlat& well,

since the second-order effects for this wing section are small at these

Mach numbers. The data at the higher Mach numbers, the three experi-

mental points obtained at Mach number 6.9 and the experimental value
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obtained at Mach number 4.04, indicate that the high Mach number data

do not correlate with the lower Mach number data at tangent ratios close

to and beyond the shock-attachment value. The trend of the data at each

Mach number indicates that the pressure drags become constant at values

close to those predicted by shock-expansion theory for the wing section

at each test Mach number. This same trend was clearly evident in fig-

ure 7 for the symmetrical double-wedge wings. Thus, it can be seen

that, with the aid of shock-expansion two-dimensio_l theory, satisfac-

tory predictions of the pressure drags of double-wedge delta wings can

probably be made throughout the supersonic Mach number range up to 6.9.

(Some of the data of figures 7 and 8 were presented in figure ll of

reference _. The discussion of the pressure-drag data in reference 5

and the second conclusion of that reference are correct with reference

to the wings with maximum thickness at _0 percent chord but apply only

for Mach numbers from 1.62 to 2.4 for the wings with maximum thickness

at 18 percent chord.)

If the skin-friction drag and the minimum pressure drag of a wing

have been determined, the variation of the drag due to lift must be

known if any estimates of lift-drag ratios are to be made. For all the

wings of this investigation it was found that the drag due to lift was

equal to the normal force times the sine of the angle of attack. This

has also been found to be the case for a large number of low-aspect-

ratio wings tested at lower supersonic Mach numbers in the Ames 6- by

6-foot supersonic tunnel (ref. 16).

Some characteristics of the family of wings shown in figure 2, which

have hexagonal sections and were tested at Mach number 4.04, are now con-

sidered and the experimental results_Nlll be compared with the predictions

of the modified theory. The delta and the diamond-plan-formwings have

constant-thickness sections out to _6 percent of the semispan and double-

wedge sections from there to the wing tip. _ne tapered wing was made by

cutting the tip from the delta wing at _6 percent of the semispan. Two

of the wings were tested with both wedge leading edges and NACA 0003-63

leading-edge sections.

Wings with rounded leading edges are of interest at high Mach numbers,

since rounded leading edges have better heat-conductingproperties than

sharp leading edges and thus will be more likely to keep their strength

at the high temperatures which will be encountered at high supersonic

Mach numbers. Figure 9 shows the effects on the lift and drag of two

delta wings at Mach number 4.04 of replacing the wedge-leading-edge sec-

tions by NACA 0003-63 leading-edge sections. The shock was attached to

the wedge leading edge of the wing having the 30 ° semiapex angle and

was detached from the wedge leading edge of the wing having _he lO ° semi-

apex angle. The change from sharp to rounded leading edge resulted in

a _0 percent increase in the minimum drag of the 30 ° wing, which is

about a 90-percent increase in the pressure drag. This result has also
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been found at lower supersonic Mach numbers. The maximum lift-drag

ratio was decreased 20 percent from 6 to 4.9 by rounding the leading

edge of the wing.

The data for the lower-aspect-ratio wing, which has a subsonic

leading edge, indicate that rounding the leading edge of this wing may

have also caused an increase in drag. This is contrary to lower Mach

number experience (for example, see ref. 25) and must be investigated

further.

The methods discussed previously gave predictions of the lift of
1

the sharp-leading-edge wings within 37 percent of the experimental

values and predictions of pressure drag of the same wings within about

l0 percent of the experimental values. The methods of predicting delta_

wing lift and pressure drag which have been proposed here are, of course,

not applicable to wings with rounded nose sections. Therefore, pressure

distributions over the two wings having NACA 0003-63 nose sections were

estimated by the hypersonic approximation or Newtonian method (ref. 26),

combined with a Prandtl-Meyer expansion over the lee surfaces of the

wings and empirical values of base pressure. Drag coefficients were

obtained by this method that were within 5 percent of the estimated

experimental pressure drags. Using the modified method and the

Newtonian method, the drag increments for these wings due to rounding

the leading edges were predicted within 25 percent. It should be pointed

out that the friction drag of the wings with the rounded leading edge

is not known with the same accuracy as that of the sharp-leading-edge

wings, so that the estimates of total drag may not be as accurate as

the calculations indicate. The drag due to lift of these wings was

found to be equal to the normal force times the sine of the angle of

attack, as was the case for the double-wedge-section wings.

At Mach number 4.04 the locations of the wing-panel centers of pres-

sure were determined experimentally. The chordwise location of the centers

of pressure ranged from about 1.5 percent of the root chord downstream to

5 percent of the root chord upstream of the center of area of the wing

panel. The spanwise location of the centers of pressure of the semispan

models ranged from 2.5 to 5 percent of the semispan outboard of the cen-

ter of area of the wing panel.

These methods of predicting wing lift and drag should give improved

predictions of wing-body characteristics when used with wing-body-

interaction methods such as the method of Nielsen and Kaattari (ref. 27).

Figure i0 presents an example of some improvements in wing-bodypredic-

tions obtained by the use of the more accurate values of wing lift

obtained from the modified theory. The data are for four delta wing-

body combinations for which the Mach lines, starting from the wing-body

juncture, lie inside the wing leading edge, but which are actually
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operating with detached shocks due to wing thickness. Three of the con-

figurations were tested at Mach number 1.93 (ref. 28) and one at a Mach

number 4.04 (ref. 4). The ordinate of figure i0 is the experimental

value of the lift produced by the wing when in combination with the

body. The abscissa is the theoretical value of the same quantity. The

open points show the relatively poor predictions obtained by the use of

the slmple-linear-theory lift coefficients. The solid points show the

improved predictions obtained by the use of the modified-theory wing-

lift coefficients. The good prediction by the linear theory at Mach

number 4.04 is fortuitous, since it is the result of the compensating

effects, and such agreement should not be expected for other configura-

tions at high Mach numbers.

To summarize, some simple methods of predicting lifts and pressure

drags of thin delta wings at supersonic Mach numbers up to 6.9 have been

presented. These methods are mainly modifications to the linear theory

based on the physical realities of the flow, including shock detachment.

Tests of a considerable number of low-aspect-ratio wings at Mach num-

bers 1.6 to 6.9 have indicated that these methods accurately predict the

wing llft and pressure drags. The effects of rounding the leading edge

of two delta wings at Mach number 4.0_ were predicted satisfactorily by

the use of the modified theory and the hypersonic approximation.
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BOUNDARY-LAYER CONTROL ON SWEPT WINGS

By Woodrow L. Cook

Ames Aeronautical Laboratory

,m

This paper presents a discussion of recent results that have been

obtained on the use of area-suction type of boundary-layer control for

the purpose of increasiug lift on wings during low-speed flight. The

lift increments obtainable and the air-flow and power requirements for

this type of boundary-layer control are compared with those associated

with boundary-layer control applied by the blowing or sucking of air

through slots.

The maximum llft of an airfoil section is normally limited by the

occurrence of air-flow separation due to a pressure rise too great for

the boundary-layer air to penetrate without the aid of some form of

boundary-layer control. In figure 1 the upper part illustrates the

usual location on an airfoil section of these pressure peaks and the

consequent pressure rises. In all three cases, boumJiary-layer control

applied in the region shown by the dots permits, as indicated by the

dashed curves, the attaimment of greater pressure peaks without air-flow

separation. The curves in the lower part of the figure illustrate the

type of lift gains attainable with boundary-layer control applied at the

three positions. For the left-hand and center cases an increase in angle

of attack is required to realize the llft gains; whereas, for the third

case, only an increase in flap deflection is necessary.

Comparison of two-dimensional section data (refs. 1 to 3) obtained

with boundary-layer control applied through slots and through a porous

area at the leading edge indicates that area-suction boundary-layer con-

trol requires much less power than boundary-layer control applied through

slots. Therefore, for swept wings efforts have been concentrated on
studies of area-suction type of boundary-layer control. The main portion

of the results to date have been obtained from tests in the Ames 40- by

80-foot tunnel (refs. 4 to 7)- Some work on suction through a porous

leading edge has also been done at the Langley Laboratory (ref. 8). Tests

have been made of North American F-86 wing panels with area suction applied

to the wing leading edge, to the nose flap, and to the trailing-edge flaps.

As a result, the major part of this discussion deals with the use of area

suction as a means of boundary-layer control although same comparisons of

power requirements of various methods is made subsequently.

The primary smalytical work on area suction for high lift was due

to Thwaites of England (ref. 9). He made a study of the problem of

controlling separation of air flow from the wing leading edge. The

method of applying Thwaites' analysis to determine the required extent
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of area suction is illustrated in figure 2. Shown here are two pressure

distributions, one, the solid curve, on a section with no boundary-layer

control at an angle of attack just prior to air-flow separation on the

section and the other, shown by the dashed curve, the pressure distribu-

tion at the desired lift coefficient. The shaded area at the leading

edge which is shown to an enlarged scale in the inset indicates the

chordwise extent of the section over which area suction must be applied.

This chordwise extent of suction is determined analytically by assuming

that no suction is required to the rear of the point where the pressure

rise is equal to that on the section with no boundary-layer control.

Thus, area suction need only be applied over the chord length between

the desired peak pressure of -30 and the point where the pressure recovery

is equal to the maximum value attainable on the section without boundary-

layer control. This reasoning has been verified in several cases by exper-

iment and, although three-dimensional effects modify the results to some

degree, the method appears to be sound. Application of area suction to

the leading-edge flap or trailing-edge flap is accomplished by using the

same method. In each case, the position of application is in the region

of pressure rise directly following the pressure peak.

Experimental studies of each of these applications of boundary-layer

control have been made. However, because of the limited landing attitudes

of current and proposed airplanes, and because boundary-layer control

applied to the flap increases llft without increasing landing attitude,

the discussion in this paper is restricted to this application.

Shown in figure 5 are llft curves obtained on the F-86 (ref. 7) for

three flap conditions. The lowest curve is for the standard F-86 slotted

flap deflected 380; the next highest is for a plain flap deflected 65o;

and the highest is for the 65° flap with area suction applied. The

increase in lift shown means that at an assumed landing attitude of 12 o

an increase in wing loading from 50 pounds per square foot to 6_ pounds

per square foot could be accepted with no increase in landing speed.

Further, it is evident that, on this design, little would be gained by

achieving large increases in maximum lift because the maximum ground angle

of the F-86 is about 14 °. For many of the airplane designs now under

consideration, the landing speeds will be established by maximum ground

angle rather than maximum lift.

Figure 4 shows the variation of flap lift increment with flap deflec-

tion angle with and without boundary-layer control and also the variation

of flap lift increment with flow coefficients for three flap deflections.

The values of lift increment are compared with theoretical values, com-

puted by the method of DeYoung as presented in NACA Technical Note 2278

(ref. lO) and shown by the dashed curve in the left-hand plot and the

horizontal lines in the right-hand plot. It is apparent from these

curves that area suction succeeds in its purpose of eliminating air-flow

separation and attaining near-theoretical values of lift. The general

m.
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shape of the curves on the right indicate that the flow separation is

eliminated very abruptly as a particular value of flow coefficient

is reached. The curves also indicate that the value of flow coefficient

required increases with flap deflection and that higher values of flow

coefficient produce little increase in lift. Not capable of being shown

here, but an important fact to note, is that no measurable hysteresis

was found; regardless of whether suction was being increased or decreased,

a nearly unique value of llft increment was measured for each value of

flow coefficient.

Such lift gains have been known to be obtainable from several types

of boundary-layer control for some time. One reason they have not been

used is that the alr-flow-quantity and pumping requirements were large.

The use of the area-suction type of boundary-layer control considerably

reduces both of these quantities. Figure 5 illustrates this point. The

comparison of flow-quantity requirements is presented in figure 5(a) and

the comparison of horsepower requirements is shown in figure 5(b) for

three types of boundary-layer control applied for a particular level-

flight condition for the F-86 airplane at !25 mph. The curves for the

flaps with suction and blowing of air through slots were obtained by

applying German two-dlmensional results (refs. ll and 12) to the

F-86 partial-span flap. It is obvious that area-suction boundary-layer

control shown by the curves at the left of each figure has greatly reduced

the power and flow requirements.

In order to study flight characteristics of an airplane with this

type of boundary-layer control, an installation in the F-86 airplane for

flight test is now in progress. Fi_ure 6 shows a schematic diagram of

the installation. The duct for removing the air shown by the shaded

area in the upper figure is placed in the flap itself and has an area

of approximately 20 square inches. The suction p1x_p show__ in t__Je rela-

tive size to the components of the airplane in the lower figure has a

diameter of 8 inches and is lO inches in length. For these tests the

turbine-driven pump will require less than one-half of 1 percent of the

main-engine-compressor air for operation, which means a thrust loss of

less than 1 percent. This thrust loss is relatively unimportant during

landing and is sufficiently small to enable the suction flap to be used

for normal or catapult take-offs.

,m

All discussion to this point has been based on experimental data

obtained on the F-86 wing panels tested in the Ames 40- by 80-foot tunnel.

The question arises as to how these data can be generalized to wings of

other plan forms. In establishing a method, the basic concepts of simple

sweep theory have been used. The three main steps of the approximate

procedure are illustrated in figure 7- The first step involves estima-

tion of the maximum flap lifts attainable. For this purpose, it can be

assumed that the maximum flap deflection for which linear effectiveness

can be maintained by boundary-layer control is 65o. Based on this
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assumption, the flap lift increment can be calculated for any wing-flap

arrangement by DeYoung's method of NACA Technical Note 2278 (ref. lO). The

second step, to determine the flow quantity of air that must be removed,
can be accomplished by estimation from values of the flow coefficients

required for the F-86 wing panels. In the previous figures the flow

coefficient CQ was based on the total wing area and the free-stream

velocity. For the purpose of application to other wing plan forms and

flap spans, the reference area used is that illustrated by the shaded

area in the center figure and the reference velocity is the component of

the free-stream velocity normal to the flap hinge line as shown. The

values of flow coefficient CQ' for the F-86 based on these references

are shown in the figure. These values of flow coefficients can be con-

verted to flow quantities for any wing plan form and flap span by the

relationship shown in the figure. The third step requires estimation

of the pumping pressure. The pressure-coefficient distribution over the

wing and flap are computed by two-dimensional theory and corrected for

the effect of sweep of the flap hinge line by simple sweep theory.

Adding the pressure losses due to flow through the porous surface and the

ducts, which were negligible for the F-86 wing panels, to the maximum

pressure over the flap will give the total pumping pressure. Combining

this pressure with the flow quantity will give an approximation of the

required power. A fuller discussion of the procedure outlined in this

figure is given in the report on the area-suction flap (ref. 7).

The acceptability of this method can be indicated to a certain

degree by recent results obtained with area suction applied to the flap

on a delta wing of aspect ratio 2. The suction requirements and the

increment of flap lift obtained for this wing which is of greatly dif-

ferent plan form than the F-86 wings were within l0 percent of the esti-
mated values.

Although the main emphasis in this paper has been on the use of area

suction for boundary-layer control_ some additional information on the use of

suction and blowing slots is available in references 13 to 15.

In summary, first, it has been demonstrated that area-suction type

of boundary-layer control will enable realization of the maximum theo-

retical values of lift for flap deflections up to 65 ° . Second, it has

been demonstrated that application of boundary-layer control by means of

area suction will result in lowering the flow requirements and power

requirements to values far below those necessary for any other form of

boundary-layer control. Third, a method has been outlined which enables

use of the data obtained on the F-86 wing panels with wings of different

plan form and flap span.
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INCLINED BODIES AT HIGH SUPERSONIC SPEEDS

By Edward W. Perkins and David H. Dennis

Ames Aeronautical Laboratory

INTRODUCTION

The purpose of this paper is to review the results of recent research

on the aerodynamic characteristics of inclined bodies. For the most part

current work includes investigation of the details of the cross-force

distribution on bodies of revolution at high angles of attack, measure-

ment of the forces and moments for a wide variety of body shapes at hyper-

sonic speeds, and determination of the applicability of presently available

theoretical methods for predicting these characteristics. Experimental

data used in the following discussion have been obtained from various

facilities of the three NACA laboratories.

CROSS-FORCE DISTRIBUTION

It has long been evident that viscosity plays an important role in

determining the characteristics of the flow about inclined bodies. In

particular, the nonlinearities of the force characteristics of inclined

bodies are attributed principally to viscous effects. A practical method

of estimating the effects of viscosity on the force characteristics was

suggested by Allen (ref. 1). Comparisons of the measured forces and

moments for a large number of inclined bodies with those predicted by this

method show that the lift and the drag due to lift are adequately pre-

dicted but that the center of pressure is, in general, approximately

1 body diameter downstream of the predicted position (ref. 2). A tenta-

tive explanation of this discrepancy has been proposed, in which it was

indicated that, although it was assumed that the viscous effects acted

uniformly along the length of the body, in reality the development of

the cross flow with distance along the body should be much the same as

the development with time of the two-dimensional flow about a circular

cylinder impulsively set in motion from rest. Hence, the longitudinal

distribution of cross-flow drag coefficient would not be constant, as

assumed, but should resemble the variation with time of the drag of the

impulsively started circular cylinder. In order to test this hypothesis

the normal-force distributions for the body shown in figure 1 have been

determined. The data are for a model consisting of a fineness-ratio-3

ogival nose tangent to a cylindrical afterbody 6 diameters long and have

been plotted as longitudinal distributions of the local normal-force

coefficient per radian for easy comparison with the distribution
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calculated with Tsien's linearized thegry (ref. 3). ~It is apparent that,

even at as low an angle of attack as 5 _, the experimental distribution

differs appreciably from that predicted by linearized theory. Assuming

that the differences between the theoretical and experimental values of

the local normal-force coefficients may be attributed to the effects of

viscosity, these differences may be used to evaluate the longitudinal

distributions of the cross-flow drag coefficient. Examination of the

data in the region near the apex of the model shows that, although the

local normal-force coefficient is greater than the value given by poten-

tial theory, it is a linear function of the angle of attack for an

appreciable angle range indicating, therefore, that the lack of agree-

ment results primarily from failure of the potential theory in this

region and that viscous effects are negligible. A comparison may then

be made, as in figure 2, between the distribution of cross-flow drag

coefficient along the inclined body and the variation with time (or as

plotted with distance traveled in diameters) of the drag coefficient of

a circular cylinder impulsively set in motion from rest. For the impul-

sively started cylinder, the cross force starts at zero, rises to a value

almost twice the steady-state value, and then, at some time later, depend-

ent on the test conditions, drops to the steady-state value. Similarly,

for the inclined body, the cross-force coefficient starts near zero at

the apex_ rises with distance along the body to a peak value on the

cylindrical afterbody, and then decreases, approaching a constant value

far downstream on the cylindrical afterbody. Thus, as anticipated, the

distribution of additional loading attributable to viscous effects differs

from that assumed by Allen for calculation of the over-all forces and

moments. In spite of this, the total additional cross force predicted

by the approximate method is very nearly equal to the measured values.

However, because of the differences between the assumed distribution and

the true distribution, the actual center of pressure is downstream of the

calculated position.

It may be noted (fig. 2) that the cross-flow drag coefficient for

i0 ° angle of attack does not rise to as large a maximum value as that for

the higher angles of attack and appears to approach a lower value near

the base of the body. This lower value of the cross-flow drag coefficient

results from the effects of boundary-layer transition. Although the cross-

flow Reynolds number was less than the critical value for a cylinder in

two-dimensional flow (approx. 250,000) the length Reynolds number was

sufficiently high, so that, within the particular wind tunnel in which

these measuremeuts were made, boundary-layer transition occurred near the

point of tangency of the nose with the afterbody even at zero angle of

attack. It is evident, therefore, that in this instance the principle

of cross-flow and axial-flow independence is not applicable, and the

cross-flow characteristics are not those associated with the cross-flow

Reynolds number.
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UNSTEADY WAKE FLOW

The formation of vortices in the wake of inclined bodies and the

subsequent asymmetry and unsteadiness at large angles of attack have been

shown by Mead and Gowen (refs. 4 and 5) to result in undesirable body-

tail interference effects. For missiles which must operate at large

angles of attack, the asymmetric and unsteady nature of this flow will

promote unexpected and erratic rolling, as well as undesirable forces

and moments in yaw. It has been found that the angle of attack at which

the vortex flow becomes asymmetric and that at which it becomes unsteady

are largely dependent upon the nose fineness ratio. The results of the

_ests of a series of cones of various apex angles to determine the angles

of attack at which the vortex flow first becomes unsteady are shown in

figure 3- The boundary curve for the conical noses represents the lowest

angles of attack at which unsteadiness in the wake was observed for the

various fineness ratio cones. From the results for the cones alone it

is apparent that the lowest angle of attack at which unsteady flow was

observed increases with decreasing nose fineness ratio. Body shapes

other than conical were also tested to determine the effect of nose pro-

file. For nose shapes which are relatively blunter than cones it was

found that the angle of attack at which the vortex wake becs_ne unsteady

was greater than that of the cone of the ss_ne fineness ratio. This is

shown in figure 5 by the typical results plotted for the parabolic-arc

nose and the ogival nose. For nose shapes which are less blunt than

cones (for exsmple, a cusped nose which has a smaller apex angle than the

cone of the ss/ne fineness ratio) the angle of attack at which the vortex

flow became unsteady was approxin_tely the same as that of the cone. It

is apparent, therefore, that insofar as it may be desirable to avoid the

unsteady flow at large angles of attack the lower fineness ratio or blunter

nose shapes appear desirable.

COMPARISON OF THEORY AND EXPERIMENT

Up to this point detailed flow characteristics resulting from

viscous effects at relatively low supersonic Mach numbers have been con-

sidered. Although similar studies of the flow about bodies at high Mach

numbers have not been made, there are now available sufficient experi-

mental data for the over-all forces and moments to permit an assessment

of the applicability of the available methods for predicting these char-

acteristics. The two simple methods which can be used by the designer

are the Newtonian or impact theory (ref. 6) and the method proposed by

Allen (ref. 1). Because of the nature of the simplifying assumptions

involved in the derivation of the methods, each would be expected to be

most applicable for a certain range of flow conditions - Newtonian theory

for very high velocity flow (M ---_), and Allen's method for
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aerodynamically slender bodies at large angles of attack. For the

potential contribution to the cross force, the use of slender-body theory

in conjunction with Allen's method of estimating the viscous effects has

proved adequate for high-fineness-ratio bodies at low Mach numbers. How-

ever, for such combinations of Mach number and fineness ratio that the

body under consideration cannot be considered aerodynamically slender, it

is known that the potential contribution to the cross force must be cal-

culated by a more accurate method. One such method is the so-called

"hybrid theory" suggested by Van Dyke (ref. 7). A typical example of

the improvement in the prediction of lift and drag characteristics

resulting from the use of Van Dyke's theory is shown by the data of fig-

ure 4. The experimental lift and the drag characteristics at M = 3.0

Of a fineness-ratio-5 cone in combination with a cylindrical afterbody

5 diameters in length are compared with the theoretical characteristics
calculated with Allen's method. The difference in the two theoretical

curves results from the different values used for the potential-flow

contribution. It is evident that the use of Van Dyke's theory rather

than slender-body theory for the potential-flow contribution results in

considerable improvement in the prediction of both the lift and the drag.

It should be noted that the difference between the drag curves is due in

part to the fact that the two theories predict different directions for

the resultant force due to potential flow. As shown by Ward (ref. 8),

the slender-body theory requires that the resultant force be directed mid-

way between the normals to the free-stream direction and to the body axis,

whereas the force calculated with Van Dyke's theory is assumed to act in a

direction normal to the body axis. Within the assumptions of Allen's

method of estimating the forces (e.g._ cos a = i)_ this difference does

not affect the theoretical lift curves.

Although the use of Van Dyke's theory extends the Mach number range

for which valid predictions of the forces can be made, the theory would

not be expected to provide accurate results for arbitrarily high Mach

numbers. A study of Van Dyke's second-order axial-flow solution (ref. 9)

which, combined with the first-order cross-flow solution, constitutes the

hybrid theory, has shown that, if the combination of Mach number and nose

fineness ratio is such that the hypersonic similarity parameter is in

excess of unity, the error resulting from the use of the second-order

solution is large. Similarly 3 comparisons of the experimental initial

lift-curve slopes with those predicted with Van Dyke's hybrid theory for

a large number of cone-cylinder combinations at Mach numbers between 3

and 7 show that_ for values of the similarity parameter of unity and

greater_ the errors in the theoretical initial lift-curve slopes become

very large. This is illustrated by the data in figure 5 where typical

comparisons of the theoretical and experimental initial lift-curve slopes

for a series of cone-cylinder combinations are made. Sketches of the

models and the Mach numbers of the tests are shown in the first two

columns. A measure of the relative aerodynamic slenderness of the bodies

is indicated by the values of the similarity parameter in the third column.
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The larger the value of the parameter the less the aerodynamic slender-

ness. The results are divided into three groups, cones alone, cone-

cylinder combinations of constant over-all fineness ratio but varying nose

fineness ratios, and cone-cylinders with relatively short cylindrical

afterbodies. These data are typical of results obtained for a large num-

ber of tests and serve to illustrate several points of interest. For the

cones alone, Van Dyke's theory yields reasonably accurate values of the

initial lift-curve slopes even for the least slender configuration. _or

the second series of models, those of constant over-all fineness ratio,

the theory tends to overestimate the initial lift-curve slope by increas-

in_ly larger amounts as the relative aerodynamic slenderness of the noses

decreases. Consideration of the results for these two series of bodies,

that is, the good agreement of the theory with experiment for the conical

noses alone and the poor agreement at the higher Mach numbers for the same

cones with cylindrical afterbodies, shows that the theory overestimates

the lift carry-over onto the cylindrical afterbody for the nonslender

bodies. The overestimation is particularly serious for the models with

short cylindrical afterbodies as shown by comparison of the theoretical

values with the experimental results for the last two bodies. For these

cases the theory overestimates the initial lift-curve slopes by approxi-

mately 18 percent. It is evident then that, for values of the slenderness

parameter of less than l, Van Dyke's theory yields reasonably accurate

results for the initial lift-curve slopes, whereas, for bodies with aero-

dynamically nonslender noses, the values predicted by tlle theory are too

large. Hence, for a value of the slenderness parameter of l, the combi-

nation of Van Dyke's theory for the potential-flow contribution with Allen's

estimate of the viscous effects yields values of lift and drag due to lift

which are too large throughout the angle-of-attack range. This typical

result is illustrated in figure 6 by comparison of the experimental

results for a cone-cylinder body of revolution with the predicted char-

acteristics. Also shown for comparison are the lift and the drag pre-

dicted with impact theory. For this high Mach number the impact theory

predicts the drag very well and is only slightly low for the lift.

The variations of lift and drag due to lift are very close to those

predicted by impact theory as shown by the data presented in figure 7 for

a Mach number of 6.86. (All data at this Mach number were obtained frc_

unpublished experiments in the Langley ll-inch hypersonic tunnel by

Herbert W. Ridyard. ) Also shown for comparison are the lift and the drag

due to lift predicted with Allen's method in which the slender-body value

of 2 has been used for the potential-flow contribution. The fact that

such excellent agreement with the experimental lift characteristics is

obtained appears fortuitous, since at this high Mach number the body

cannot be considered aerodynamically slender. However, additional

experimental dsta at M = 6.86 for this same conical nose in combina-

tion with various lengths of cylindrical afterbody are essentially in

as good agreement with this theory as shown here.
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From the foregoing observations it is apparent that for the inter-

mediate range of aerodynamic slenderness, that is, for values of the

similarity parameter near i, neither of the simple theories is adequate.

At present, the shock-expansion method as developed by Eggers and Savin

(ref. i0) for nonlifting bodies is being extended to inclined bodies to

provide a relatively simple means of predicting aerodynamic characteris-

tics in this intermediate range.

MAXIMUM LIFT-DRAG RATIOS

In addition to the aerodynamic characteristics so far discussed,

the lifting efficiency of bodies may often be of importance. The

efficiency, or lift-drag ratio, of bodies at high supersonic speeds is

being investigated experimentally with particular regard to the effects

of variations of body geometry on maximum lift-drag ratios.

In analyzing the effects on lift-drag ratio of changing body geometry,

consideration must be given to factors other than simply the aerodynamic

forces. For example, considerations such as that of the usable volume

and that of aerodynamic heating may rule out the use of a body shape

which is aerodynamically the most efficient. According to the Newtonian

concept, a flat plate of zero thickness has the highest lift-drag ratio.

However, from the standpoint of usable volume and aerodynamic heating

the flat plate is perhaps the least desirable body shape.

These two considerations, usable volume and aerodynamic heating,

suggest a parameter which may be used in conjunction with lift-drag ratio

for assessing the relative desirability of various body shapes. Accord-

ingly, the ratio of the volume of a body to the product of its surface

area and its length has been selected. Surface area is used simply as

an indication of the aerodynamic heating since the heat absorbed will be

approximately proportional to the body surface area. This measure of

heat input does not, of course, account for localized heating, the magni-

tude of which is determined, in general, by the details of a particular

body shape. Body length has been included to make the parameter dimen-

sionless and therefore restricts the comparisons to bodies of the same

length. This ratio might also be termed a measure of the structural

efficiency of a body shape since a high ratio of volume to surface area

corresponds roughly to a high ratio of carrying capacity to structural

weight. It is evident then that large values of the parameter, as well

as high lift-drag ratios_ are desirable for lifting bodies.

The effects on maximum forebody lift-drag ratios of four systematic

variations of body shape are shown in figure 8. The values of the lift-

drag ratios are based upon the forebody drag only and hence do not include

any base drag. The test Mach number range in which these data were
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obtained was from 3 to 5. It has been found experimentally that, for

approximately constant Reynolds numbers, Mach number variations in this

range have relatively little effect on maximum forebody lift-drag ratios.

Large Reynolds number variations, on the other hand, would alter (L/D)max
because of the corresponding large changes in skin-friction drag. Plotted

in the upper left-hand side of figure 8 are the results for conical bodies

of varying fineness ratio. It is apparent that increases in the nose fine-

ness ratio result in increases in the maximum lift-drag ratios. This is

accompanied, however, by decreases in the volume-to-surface-area rati6s.

Similarly, the addition of various-length cylindrical afterbodies to a

fineness-ratio-3 conical nose as shown at the bottom left-hand side also

results in an increase in maximum forebody lift-drag ratio with a loss in
the volume-to-area ratio.

At the upper right of the figure is shown the effect of varying the

nose profile shape of a body. It is evident that there is little effect

on the maximum lift-drag ratio. It is interesting to note, however, that

the body having the nose shape for minimum drag at zero lift at high

supersonic speeds retains its low drag advantage at angle of attack and

has the highest maximum lift-drag ratio of this group.

The results presented in the plot in the lower right of the figure

show that the maximumforebodylift-drag ratio is increased with a

relatively small decrease in volume-to-surface-area ratio by increasing

the nose fineness ratio of cone-cylinder bodies of given over-all length

and diameter. For bodies of revolution this latter method of increasing

the (L/D)max may be said to be the most effective.

It has been suggested that body ohapes other than bodies of revolu-

tion might be employed advantageously as lifting bodies at high supersonic

speeds. Accordingly, experimental investigations of the aerodynamic char-

acteristics of various body shapes at high Mach numbers have recently been

conducted at both the Langley and Ames Laboratories. Figure 9 shows the

maximum forebodylift-drag ratios obtained at M = 6.86 for various flat-

bottom body shapes of constant length. Because base-pressure-drag data

were unavailable for three of the bodies shown, it was necessary to

estimate the magnitude of the base pressure drag. A reasonable estimate

of the base drag was found to be approximately 7 percent of the total drag

at (L/D)max. The data points for which this estimate was made are indi-

cated by the flagged symbols. The cone-cylinder body of revolution is

included for comparative purposes. These data show again that, in general,

as body shapes are altered to obtain higher forebody lift-drag ratios, the

ratio of volume to surface area for the shapes decreases. An exception

to this trend is noted in the result for body C of this group. This wide

body is related to body E in that it was obtained by simply slicing model E

along the vertical plane of symmetry and inserting a rectangular center

section. This particular alteration in body shape results in increases in

both the maximum forebody ratio and the volume parameter. The
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extent to which further such alteration of shape might continue to be

advantageous is unknown at present.

Figure i0 shows, in summary, the results just presented, as well as

additional data from various other sources (refs. ii, 12, 13, and 14).

These data points represent maximum forebody lift-drag ratios at Mach

numbers from approximately 2.5 to 7 for a relatively wide range of

Reynolds numbers. The abscissa of this figure is the ratio of the volume

parameter of the particular bodies to that of a sphere which has the

maximum possible value of V/S. At I on the horizontal scale is the

sphere which has zero lift-drag ratio. At the other extreme, 0 on the

horizontal scale, is the maximum lift-drag ratio of a flat plate. For

the conditions imposed the theoretical (L/D)max of the flat plate is 6.

These data show the general trend of the variation of maximum forebody

lift-drag ratio with the volume-to-surface-area ratio for a wide range

of Mach numbers and Reynolds numbers. The data points repeated from

figures 8 and 9 are inJicated by closed symbols and show the effective-

ness of the systematic changes in body shape that have been considered

relative to the general trend indicated by the curve. It should be

noted that, in general, over-all body fineness ratios decrease as the

volume parameter increases_ that is, bodies represented by points on

the left-hand side of the figure are of relatively large fineness ratio

(i0 or greater) and those farthest to the right are of small fineness

ratio (5).

As stated previously, it is desired that efficient lifting bodies

have both a large maximum forebody lift-drag ratio and a large value of

the volume-to-area ratio. It is apparent, however, that at high super-

aonic Mach numbers for a wide range of body shapes the two requirements

are, in general, not compatible and therefore compromises are necessary.
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SOME CONSIDERATIONS CONCERNING INLETS AND DUCTED BODIES

AT MACH _S FROM 0.8 TO 2.0

By Richard I. Sears

Langley Aeronautical Laboratory

e

eA -,

The study of air-inlet design is essentially a study of thrust and

drag. With an adequately sized inlet, the thrust available is propor-

tional to the total pressure the inlet can provide. Many data have been

presented in the past concerning the pressure recoveries attainable at

supersonic Mach numbers with various types of inlets. Some infornmtion

on this subject is presented in this and the following paper.

Much less data relative to the drag of bodies having air inlets and

internal-flow systems are available. The drag characteristics of non-

ducted bodies of revolution as affected by various shape parameters have

been fairlywell established and a considerable _mount of experimental

data is published. Incorporation in a body of a turbojet engine and

its associated inlets and ducting can cause a major departure in geometry

from the more idealizedbodyof revolution.

This paper presents some drag information from systematic tests of

nose inlets and fromisolated tests of scoop and wing root inlets.

Figure I shows configurations tested by means of rocket techniques

to evaluate effects of cowling profile on the drag of normal-shock nose

inlets. Five different cowl shapes were tested, each with identical

afterbody shape, and are shown in figure 1. All cowls were of fineness

ratio 3 and the inlet area was 2& percent of the body frontal area.

Over-all model fineness ratio was 8. The top cowl is of the NACA 1-series

family; the second is defined by a parabolic arc with its vertex at the

maximum di_:_ter. The next three are conical with beveled, blunt, and

sharp lips, respectively.

Figure 2 shows the measured external drag coefficient CD (based

on body frontal area) of the complete models, at the left as a function

of M for _m_m= 1 and at the right as a function of m/m o for M = 1.3.mo

For maximum flow rate at Mach numbers up to about 1.1, all cowl shapes

have about the same CD, but the curves spread apart at higher M, the

1-series cowl having the greatest _ and the cone with sharp lips the

least. The other cowls fell in between and in the same order as shown

in figure 1. The solid line gives the drag of the nonducted, pointed
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body_ derived by extending the lines of the parabolic cowling as shown

at the top of figure i. The drag of the models with conical cowls are

significantly lower than that of the pointed body because of the air

a_itted.

At M _ 1.35, the value of CD for the body with blunt-lip conical

cowl is about 0.04 less than that for the 1-series cowl. Since both the

1-series cowl and the blunt-lip conical cowl had identical profiles in

the region of the inlet lip_ it is apparent that the lower drag of this

conical cowl is associated with its lesser fullness of profile farther

back than the region of the lips.

The curves of figure 2 show that at M = 1.3 all cowls except the

1-series have about the same value of CD at __m _ 0.8. Thus, whereas
mo

the sharp lip configuration had least drag at maximum flow rate, the

beveled and blunt-lip conical cowls gave less increase in CD as air

was spilled. Actually_ the increase in CD for the sharp-lip conical

cowl is just _oout equal to the additive drag calculated from momentum

considerations. The other inlets all benefit to son_ extent from leading-

edge suction, the increment in CD associated with spilling air being

less than the computed additive drag. The fact that blunt lips can be

tolerated on conical cowls without large drag penalties is encouraging

because they may be necessary structurally and for operation at take-o1"f

and at angles of attack.

The effect of cowl shape on the drag of conica]-shock nose-inlet

models in the transonic and supersonic range has been recently oo_ained

from rocket tests. The configurations tested are shown in figure 3.

The _dels had afterbodies and fins similar to those of figure i. The

cowls were of fineness ratio 3 and the inlet area was 24 percent of the

body frontal area. _e cowls had external lip angles of 12 ° and 17 °

faired into conical and parabolic cowl shapes as shown. The cone posi-

tion was varied as indicated by the values of e_ at the right of

figure 3-

The data obtained for these models are given in figure 4. The

internal flow for each model was the maximum that the inlet would pass

and is given by the upper curves, one for each cone position. The designa-

tion for each drag curve specifies first; the cowl shape, parabolic or

conical; second, the external lip angle of the cowl; and lastly, the cone

position ancle.

Inspection of the drag curves shows that changes in lip angle and

cone position result in small changes in the drag in the direction to be

t
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expected. However, that shown for changes in cone position borders on

the accuracy of the tests. The effects of cowl shape are more pronounced.

The conical-cowl models had lower drag than did the parabolic-cowl nodels_

this result is consistant with the results shown in figure 2 for the nor_al-
shock nose-inlet models.

Let us now examine some aspects of the pressure-recovery problem.

The total pressure recovery at supersonic Mach numbers of nose inlets,

with and without external compression, are fairly well known for operation

at an angle of attack of 0o . Tests have indicated that at higher angles

of attack the pressure recovery decreases rapidly.

Figure 5 shows some results from exploratory tests of a swept inlet

expected to have better recovery at high angles of attack than a normal-

shock inlet. The latter is also shown for comparison. The swept inlet

was made frem a circular pipe by cutting it obliquely at 45 ° to the axis

and beveling the lips on the outside. Total-pressure recoveries were

measured at M = 1.42 without any diffusion and at M = 1.84 with some

diffusion. The portion of the inlet and duct ahead of the rake station

is shown in the sketches. Positive angles of attack are taken as indi-

cated by the arrows. The normal-shock inlet, tested only at M = 1.42,

had ro1_uded inner lips and some diffusion.

The models were tested with a choking nozzle at the duct exit, which

simulates constant-engine-inlet Mach number operation. The mass-flow ratio

therefore varied with angle of attack, it being proportional to the pres-

sure recovery. The upper set of curves show the values of mass-flow ratio

obtained, and the corresponding pressure recoveries are shown in the lower
set of curves.

It appears, from these data, that use of a swept nose inlet provides

reasonably good recoveries at positive angles of attack as high as 20 °

to 30 ° at the expense of low flow rates and poor recoveries at negative

angles of attack. Other published data (ref. i) show that a swept nose

inlet with a vertical-wedge compression surface maintains a nearly con-

stant recovery of about 0.85 for angles of attack from 0° to i0 ° at

M = 1.9. The drag characteristics of the swept inlet have not been
measured.

Fairly extensive data are available on the pressure recoveries

attainable with nose inlets, and these will not be discussed further

here. However, in many cases it is not practical to use nose inlets.

Many different types of scoop inlets have been tested with widely dif-

fering results dependent, to a large extent, on the treatment of the

boundary layer ahead of the inlet.

Figure 6 is intended to give a brief perspective of the relative

standing of various types of scoops with regard to total pressure recovery.

p
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The data presented are the maximum average total pressure after diffusion

at about an angle of attack of 0 ° and for mass-flow ratios above 0.75.

It is assumed that for a scoop to be considered for use it must have good

recovery, at least for these operating conditions. The s_nbols without

flags represent wind-tunnel-data test points and the symbols with flags

represent the end points of curves defined by rocket data. The open

ssmlbols represent scoops with son_ type of boundary-layer removal system 3

whereas the solid points indicate scoops with no boundary-layer removal

system. Detailed results for many of these scoops are reported in ref-

erences 2 to ii. Scoop inlets are of several types as indicated in the

lower left corner of figure 6 and by the sketches shown.

t

a

The data presented are sample data for each type of scoop_ but the

maximum recoveries shown are believed quite representative of those that

have been obtained for each type. Problems of matching are treated in a

subsequent paper by John L. Allen and are not considered here.

Inspection of these data indicates that the recoveries obtained at

supersonic speeds can be either good or bad depending on the scoop con-

figuration used and on the treatment of the bo<mdary layer. Best recov-

eries have been obtained with scoops located just under the nose of the

body and with external-compression-type scoops having complete boundary-

layer removal. At M < 1.4 and m/m o > 0-75_ the nose scoop apparently

needs no bo<_dary-layer removal and ___s good recovery at positive angles

of attack (refs. 4, 5, and 9). The following paper treats the external

co_ p_'ession scoop in more detail. Annular or semiannular scoops which

enclose an appreciable part of the body circumference give low recoveries

and pulsations at reduced flow rates (refs. 2, 3, and 7). The submerged

inlet suffers also from boundary-layer shock interaction aggravated by

superstrear_ Mach nun_ers ahead of the inlet_ caused by the curving r_np

floor i_erent in the design (ref. 8).

Whereas the pressure recovery of scoop inlets can be rather easily

compared, the drag characteristics cannot be except in special cases

where several scoop arrangements are tested for a particular airplane.

Such systematic tests are rare. The installation of the power plant_

ducting_ and scoop inlet largely determine the fuselage lines whichj of

course_ govern the drag. Although drag data for scoop configurations

_re very meager, it is possible to report the results from several isolated

investigations.

Figure 7 shows about all the fuselage models having sc<_op inlets for

which dras data are available. Above the sketch of each configuration_

the curve of area distribution normal to the longitudinal axis is shoml

in order to define the geometry better. The solid line represents areas

corresponding to the physical outline of the mo_el and the dashed line

represents deduction of the entering free-stream tube area; a procedure

J
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which recent tests have shown to result in an equivalent nonducted body

having the same drag. All the diagrams are shown to the same scale.

For the upper three models, only the forward portion o1" the fuselage

was tested. Models B, C, and G and the forward half of model E are models

of actual aircraft. The models on the left are research configurations.

Drag curves as a function of Mach number are given for some of these

configurations in figures 8 and 9 and a comparison of the drag results

is given in figure lO. Because these configurations are not related in

any manner except that all models had scoop inlets, it is convenient to

plot their drag as a function of effective body fineness ratio. This

value is taken as the length divided by the diameter of a circle of area

equal to the maximum frontal area.

S

The data are shown at the top of figure i0 for the fuselage nose

configurations, A, B, and C, and at the bottom of figure lO, for the

complete fuselage models. The two solid lines, shown for reference pur-

poses, give the drag of parabolic bodies of revolution without internal

air flow. The solid line on the top of figure lO was computed for

parabolic-nose shapes from second-order theory with an allowance for skin

friction included. The curve on the bottom of figure lO was obtained from

rocket tests of parabolic bodies of revolution. If the drag shown by

these curves at high fineness ratio is taken as that for a good parabolic

body of revolution, then the scale at the right gives the ratio of drag

to that of a good body.

Many of the models have nearly twice the drag of good bodies and

almost all have appreciably more drag than parabolic bodies of the same

fineness ratio.

For model E (ref. 7), the area curve shows a forward location for

the maximum area station which results in a low nose fineness ratio.

Data presented in the paper by Robert L. Nelson and William E. Stoney, Jr.,

indicated that the increase in drag for model E over that shown in figure lO

by the solid line for a parabolic body of the same over-all fineness ratio

and in figure 8 can be just about accounted for on the basis of difference

in nose fineness ratio. Thus, although, as will be shown in a subsequent

paper by Lowell E. Hasel, forwardly located scoops are favorable from

boundary-layer considerations, they can cause high drag if they result in
a low effective nose fineness ratio.

The forwardly located underslung scoop of model D was added to a

parabolic body of revolution without increasing or changing the location

of the maximum frontal area. Thus, the nose fineness ratio was not changed

and, as indicated by point D on the lower part of figure l0 and by figure 8,

the drag of the ducted model was, within the experimental accuracy, the

same as that of the body without scoop. Although the scoop of model D had
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an area only 8 percent of the body frontal area, tests in the Langley

8-foot transonic tunnel (ref. 9) of a similar scoop of area twice as

large relative to the fuselage also indicated negligible drag increment,

at least to M = i.i, the limit of the test. The underslung nose scoop,

therefore_ looks good from drag as well as pressure-recovery considerations.

Although the effective fineness ratio (as defined) is fairly large

for model C3 dragwise it acted like a nose of much lower finenes_ ratio

(ref. Ii). The distribution of area in this case was important.

Fuselage drag usually accounts for the greater portion of airplane

zero lift drag. Therefore, it is obviously important to make the drag

of fuselages, with scoop inlets and associated bumps for ducting and

engine housing_ approach the drag of good bodies of revolution. It is

recognized that greater research effort is needed to indicate ways of

achieving this effect.

Another important class of inlets is the wing root inlet. Data

published in reference 12 show that a wing-root inlet could be added to

an 8-percent-thick swept wing with very little increase in drag at Mach

numbers less than 1.4, the limit of the tests. Figure ii presents data

to M = 2 which lead to similar conclusions for a somewhat dii'ferent

wing-root-inlet arrangement.

The basic wing was swept 47 ° on the quarter-chord line and was

5.5 percent thick. Inboard of the one-third semispan station the wing

was split and the lower portion dropped to form the root inlet as shown

in the sketch. The modified wing root housed two semiburied turbojet

engines on each side as well as the inlet. The upper curve gives the

mass-flow ratios at which the inlet was operated. The lower two curves

_ive the measured external drag coefficients of the wing. These values

are based on exposed-wing plan-form area. The solid points indicate

data for the wing with inlet and engine installation and the open symbols

are for the unaltered basic wing. These drag coefl'icients were obtained

from tests of the configuration with and without the wing. Wing-fuselage

interference drag is thus included in values given in figure ii. The data

are given for the zero-lift condition only.

Comparison oI' the two drag curves indicates that addition of this

root inlet increased the wing drag coefficient by about i0 percent at

supersonic speeds. Inasmuch as the wing frontal area was increased

20 percent by the inlet, this result means that the drag per unit frontal

area of the wing with inlet and engine installation was only 92 percent

of that of the basic wing. This effect is, of course, caused by the

fact that the wing was admitting air. However, the reduction in drag per

unit frontal area for this wing root inlet and engine configuration is in

marked contrast to the increases in drag per unit frontal area shown pre-

viously for fuselage configurations having scoop inlets.

Q
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Although adequate pressure-recovery data are not available for this

inlet configuration, figure 12 shows recoveries measured in the Langley

transonic blowdown tunnel for another wing root inlet. Adding this

elliptically shaped root inlet to the basic swept wing-fuselage configura-

tion caused increments of drag coefficient of about the same magnitude as

those shown in figure Ii.

The inlet lips were round and staggered as shown in the sketch.

Tests were made with and without a bo_mdary-layer bleed. The basic fuse-

lage lines just ahead of the inlet were altered to permit installation

of the boundary-layer bleed scoop. The boundary-layer duct exited normal

to the wing on the lower surface just back of the inlet.

The three sets of curves show the effects of Mach number, angle of

attack, and mass-flow ratio on the average pressure recovery measured

after diffusion, for operation with and without the boundary-layer bleed.

Analysis of the data shown in figure 12 and in figure ii shows swept-

wing root inlets to be potentially low drag configurations and, without

external-compression devices, to be potentially capable of giving normal-

shock recoveries over a fairly large angle-of-attack range. The need

for further development to provide a workable boundary-layer bleed system

is indicated.

In conclusion, this paper has attempted to point out some of the large

differences that can exist at supersonic speeds in the pressure recovery

and drag of good and not-so-good inlet and engine installation arrange-

ments. Best pressure-recovery results have been obtained with scoop inlets

located close under the nose and, for farther rearward locations, with

external compression inlets having complete boundary-layer removal. Best

drag results have been obtained with conical nose inlets, with scoop inlets

located close to the nose and causing little or no increase in frontal area,

and with a wing-root-inlet buried-engine configuration. More work is needed

to define the minimum drag arrangements of scoop configurations wherein

the engine installation causes large increases in frontal area of a basically

good fuselage. At present, available tests have shown such configurations

to be of high drag relative to those previously mentioned.
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THE PERFORMANCE OF CONICAL SUPERSONIC SCOOP INLETS

ON CIRCULAR FUSELAGES

By Lowell E. Hasel

Langley Aeronautical Laboratory

Supersonic-scoop-inlet research has, for the most part, been con-

ducted either with the inlet on a flat plate at 0° angle of attack

(refs. 1 and 2, e.g.) or with the inlet at a fixed position on a fuselage

(ref. 5, e.g.). Such angle-of-attack data as are available (refs. 3,

4, and unpublished data) are not complete enough to enable a detailed

evaluation to be made of scoop-inlet characteristics at angles of attack.

The Langley Aeronautical Laboratory and the Lewis Flight Propulsion

Laboratory are concurrently investigating the angle-of-attack character-

istics of scoop inlets (refs. 9, 6, and unpublished data obtained at the

Langley Laboratory) using the models shown in figures 1 and 2. Through-

out the remainder of the discussion these configurations will be designated

as models A and B, respectively. The inlets on both models are of the

conical type, having 29 ° half-angle cones, and are designed for a Mach

number of approximately 2. The inlet on model A has a capture area of

about 29 percent of the fuselage frontal area. Model B utilizes two

completely independent inlet and diffuser systems. Each inlet is similar

to the one illustrated in figure 2. The total capture area of the twin

inlet installation is about 22 percent of the fuselage frontal area. On

both models the splitter plate separating the inlet from the boundary-

layer bleed is swept back from the tip of the central body to the lip of

the inlet. The boundary layer is removed by means of a suction bleed on

model A; whereas on model B a 16 ° included-angle wedge diverter is used

to displace the boundary layer around the sides of the inlet. The tip

of the wedge is located at the same axial position as the tip of the

central body. Provisions are incorporated in both configurations for

varying the bleed height. On model A the maximum bleed height is twice

that illustrated in figure 1. The fuselage forebody fineness ratios of

model A are 4.0 and 6.9. The nose section is an ogive of fineness ratio 3.9.

The forebody of configuration B has a fineness ratio of 7-9 and corresponds

to the HM-10 forebody shape.

Before discussing the test results, a brief review will be given of

those features of the flow about bodies of revolution (ref. 7) at angles

of attack which influence scoop performance.

At angles of attack the boundary layer flows from the windward to

the leeward side of the fuselage, figure 5, thus reducing the thickness

on the bottom and increasing the thickness on top. As the angle of attack
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increases the boundary layer separates and creates a stable vortex pattern

similar to that known to exist under certain conditions behind circular

cylinders. The angle of attack at which the vortices are first evident at

the inlet varies with axial position of the inlet on the fuselage and the

Reynolds number. A typical effect of the vortex formation is to thin the

boundary layer over a small portion of the top of the fuselage. It is

probable that on fuselages which are bodies of revolution a portion of

these vortices will enter an inlet located on the top section of the fuse-

lage. If the angle of attack becomes very large, the vortex flow will

become unstable. The latter condition may be expected to produce very

unsatisfactory engine operation.

The forebody also has a significant effect, especially at angles of

attack, on the local Mach number distribution at the inlet. High local

Mach numbers and large cross-flow angles are created near the side of the

fuselage; while on the bottom the local Mach number decreases.

The boundary-layer conditions which existed a short distance ahead

of the inlets of models A and B at M = 2.0 are illustrated in figure 4.

The boundary-layer thickness expressed in terms of the boundary-layer

thickness at 0 ° angle of attack is presented as a function of fuselage

position. These data were obtained without the inlet installed on the

fuselage. Transition wires were used on the two shorter forebodies to

insure a turbulent boundary layer at the inlet, since this is the condi-

tion most likely to occur in flight. On the long forebody natural

transition occurred upstream of the inlet. On the top section of the

fuselages the increase of boundary-layer thickness at both angles of

attack is smallest on the short forebody. (For reasons of clarity the

boundary-layer data obtained on the long body at lO ° have been omitted

from fig. 4. The boundary-layer growth on this forebody at an angle of

attack of l0 ° was greater than on the short forebody at 12°.) At 6° the

vortex formation is evident only on the long forebody. At 12° a vortex

has formed on the medium-length forebody but none is evident on the short

forebody. On the bottom of the fuselages the boundary-layer thickness

decreases considerably at angles of attack. It is interesting to note

that the vortex thins the boundary layer over only a relatively small

portion of the top of the fuselage, and that this region of thin boundary

layer appears to be too narrow to be utilized by typical inlets such as

the one on configuration A.

Figure 5 presents a typical set of data obtained at M = 2.0 from

the configuration having the short forebody, showing the effect on pres-

sure recovery of circumferential location of the inlet. Maximum pressure

recoveries are presented as a function of fuselage position and angle of

attack. The bleed-height ratio, h/5_=0o of 1.25, chosen for this figure

represents the ratio of the boundary-layer bleed height to the boundary-

layer thickness at 0° angle of attack. Preliminary examination of the

data has indicated that the bleed system was removing all of the air
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which could enter its capture area. The maximum pressure recovery is

adversely affected by angle of attack if the inlet is located anywhere

in the region extending from the top to the side of the fuselage. These

losses are caused either by the thickening of the boundary layer, high

local Mach number and accompanying large cross-flow angles, or a com-

bination of the two effects. On the bottom of the fuselage the pressure

recovery increases with angle of attack because of the decrease in local

Mach number ahead of the inlet.

The effect of bleed height on scoop performance is illustrated in

figure 6 which presents the maximum pressure recoveries as a function

of bleed-height ratio for three angles of attack and for three inlet

positions. At 0° the pressure recovery continues to increase when the

bleed-height ratio exceeds 1. This is possibly due to the fact that,

as the bleed height increases, the average Mach number of the air

entering the inlet decreases slightly. When the inlet is on top of the

fuselage, the pressure recovery at 6° continues to increase until the

bleed-helght ratio is about equal to the maximum boundary-layer thickness

ratio. At 12 ° the pressure recovery appears to become constant at a

bleed-height ratio near 2 although the maximum boundary-layer thickness

ratio is about 3.7- At the side position, increasing the bleed-height

ratio has less beneficial effect on the pressure recoveries at angles of

attack since the losses are primarily caused by high local Mach numbers

and large cross-flow angles. At the bottom position the bleed height

has only a small effect on the pressure recovery of the inlet.

These pressure-recovery characteristics (figs. 5 and 6) at angles

of attack may be expected to change to some extent with forebody length.

The variations will be greatest at the top inlet position because of the

differences in the rate of boundary-layer thickening (fig. 4) and because

of the vortex formation which may exist at an inlet mounted farther to

the rear on a fuselage.

The effect of forebody length on pressure recovery is illustrated

in figure 7. The pressure recoveries, expressed in terms of the 0°

recovery, are presented as a function of angle of attack for the top

and bottom inlet positions. The bleed-height ratio is 1.25. The effect

of the more rapid thickening of the boundary layer on the top of the

two longer forebodies is most evident at moderate angles where the

decrease in pressure recovery of these configurations is appreciably

more than for the short body configuration. At the higher angles of

attack an abrupt and favorable change in the scoop characteristics on

the longer forebody occurs, probably because of the effect of the vor-

tices generated on this forebody. On the bottom of the fuselages, the

effect of the forebody length is smaller. The reasons for the consistent

variation of pressure recovery with forebody length have been investi-

gated to some extent but no conclusions have as yet been reached.

w
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If the forebody is long enough to produce a vortex flow ahead of

the inlet, the variation of the pressure-recovery characteristics with

bleed-height ratio will be somewhat different from those previously

discussed. These differences may be noted in figure 8 which presents

the recovery characteristics of an inlet mounted on top of the long

forebody. On the left side of the figure the pressure recovery is pre-

sented as a function of the bleed-height ratio for several angles of

attack. On the right side the distribution of the ratio of pitot pres-

sure to free-stream-total pressure on the fuselage just ahead of the
inlet is shown for 0° and i0 °. The free-stream value of this ratio is

0.72 at M = 2.0. The boundary-layer surveys indicated that the vortex

formed on this forebody at the inlet station at about 4 ° . The action

of the vortices is most evident when none of the boundary layer is removed

from the inlet. At this condition the pressure recovery decreases as the

angle of attack increases to 3° . Further increases of the angle of attack

to 6° and i0 ° result in large increases in the pressure recovery. The

pitot-pressure contours indicate that at i0 ° a relatively large amount of

the vortex enters the inlet. It is thought that the primary effect of

the vortex is to prevent separation of the boundary layer inside the

inlet and thus increase the pressure recovery. As the bleed height

increases, the pressure recoveries at the lower angles increase and the

effect of the vortex becomes much less apparent.

Model B, which is the long forebody configuration (fig. 2), has also

been tested at Mach numbers of 1.5 and 1.8. In general, the Mach number

had little effect on the over-all pressure-recovery characteristics of

the inlets. As the Mach number decreased the changes in pressure recovery

with angle of attack also decreased.

g

t

It is obvious that the pressure-recovery characteristics of inlets

operating on top of a fuselage can be improved if the boundary-layer

thickness can be decreased. Several possible solutions to this problem

exist in addition to methods such as minimizing fuselage angle of attack

and keeping the inlet as far forward as is consistent with low-drag

considerations. The use of fuselages having noncircular cross-sectional

shapes should be investigated. On fuselages of circular cross section_

methods of producing a Larger region of thin boundary layer should also

be studied. If the transverse distance between the vortices can be

increased and the vortices induced to form at smaller angles of attack,

some benefit may result. This latter scheme has been briefly tried on

configuration A by the use of axial and diagonal vortex-generator strips.

To date, the desired increase in pressure recovery has not been obtained.

Figure 9 illustrates the drag characteristics of the top and bottom

inlet positions. The external drag at a mass-flow ratio of about 0.9 is

presented on the left side of the figure as a function of bleed-height

ratio for angles of attack of 0° and 6° . At 6 ° the drag of the bottom
inlet is higher than the drag of the top inlet. Since this difference

o_

Q



w
o

• O @• @@@ • •• • ••

CO_ID_I_Z"" "" "" • • • • --- -9

in drag tends to counteract the pressure-recovery advantage of the

bottom position the optimum location of the inlet should be determined

on the basis of net thrust so that the effect of drag, as well as pres-

sure recovery, may be considered. The maximum values of net thrust for

a typical turbojet engine, expressed in terms of the net thrust at 0°

are presented on the right side of the figure as a function of bleed-

height ratio. In calculating the net thrust the assumption was made

that the drag associated with the removal of the boundary-layer air

was equal to one-half its kinetic energy. This assumption concerning

the drag of the boundary-layer removal system is not critical to the

net-thrust comparison because the bleed mass-flow ratios were about the

same for the two inlet positions. It appears on the basis of net-thrust

ratio that the top and bottom inlet positions are comparable for this

particular configuration and angle of attack. It should be mentioned

that this figure is based on preliminary data and may be subject to

some changes after analysis of the data is complete. Nevertheless, it

is important to note the compensating effects of drag and pressure-

recovery characteristics which may exist for the top and bottom inlet

positions.

w

The pressure recoveries of scoop inlets at a given bleed-height

ratio may be affected by the characteristics of the boundary-layer

removal system. A series of practical removal systems have been inves-

tigated at the Lewis Laboratory by mounting half-inlets on flat plates.

These configurations and the results (refs. 2 and 8) are presented in

figures l0 and ll. On the suction-bleed configurations the boundary-

layer air was removed by means of an internal duct system while on the

three diverter systems the boundary-layer air was displaced around the

sides of the inlet. The suctlon-bleed configurations differ only in

the leading-edge shape of the splitter plate separating the inlet from

the boundary-layer removal system. The diverter configurations employ

a blunt edge, a 68 ° included-angle wedge, and the central body to dis-

place the boundary-layer air. The effect of bleed-height ratio on the

pressure-recovery characteristics of these configurations is illustrated

in figure ll for a Mach number of 1.88 and 0° angle of attack. The

characteristics of the two suctlon-bleed configurations are comparable

and are slightly superior to the blunt diverter. Both the 68° wedge and

central-body diverter systems require a considerably larger bleed-height

ratio than the other systems to obtain a corresponding inlet pressure

recovery. It should be mentioned that a normal shock must exist ahead

of the 68 ° wedge diverter. Since the tip of the wedge is at the same

location as the tip of the central body this normal shock can affect

the inlet flow. On another configuration the wedge was moved rearward

20 percent of the distance between the tip of the central body and the

cowl lip. The pressure-recovery characteristics of this configuration

were comparable with those of the suction bleed. Configuration B uti-

lized a 16 ° wedge diverter with the tip of the wedge located at the tip

of the central body. No adverse effects on inlet pressure recovery were

noted. At a Mach number of 2.93 the characteristics of these systems,

relative to each other, are different.
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The pressure drag of the wedge-diverter systems, neglecting the

wedge base drag, has been investigated by Piercy and Johnson and is

illustrated in figure 12. These data were obtained from a simplified

configuration which consisted of a wedge diverter mounted between two

flat plates to simulate the fuselage and inlet floor surfaces. Static

pressures were measured on the wedge leading edges to determine the

wedge pressure drag as a function of bleed-height ratio, wedge apex

angle, Mach number, and axial location of wedge with respect to the top

flat plate. The typical set of data presented in figure 12 was obtained

at a bleed-height ratio of 1.0, and is based on the wedge frontal area.

The pressure drag increases as the wedge apex angle e increases and is

highest for the curved diverter. The maximum value of the drag for these

configurations is relatively small, however, when referenced to the

frontal area of a typical inlet-fuselage configuration. The exact effect

of Mach number is not known since data are available for only two Mach

numbers. This effect, however, appears to be small. It should be mentioned

that a consideration of the skin friction of the wedges will decrease the

drag differences between the various configurations. The effects of the

boundary-layer flow over the rear portion of an actual configuration may

also alter the comparison to some extent.

The flat-plate inlets (fig. i0) which have efficient boundary-layer

removal systems are essentially operating at free-stream conditions when

the bleed-height ratio exceeds 1.0. Therefore, a comparison of the

recoveries of these inlets and of practical scoop installations on a

fuselage, such as A and B represent, is of interest to evaluate the

recovery penalties which are associated with the fuselage installations.

Such a comparison is made in figure 13 which presents, for an angle of

attack of 0°, the maximum pressure recoveries of the flat-plate- and

fuselage-mounted inlets as a function of the bleed-height ratio. Since

the flat-plate data were obtained at M = 1.88 an estimate of the

recovery of this inlet at M = 2 has been made. The best recovery

obtained from the fuselage configurations is about 4 percent less than

the recovery of the flat-plate inlet. Between one-fourth amd one-half

of this loss is due to the fuselage nose shock and the fact that the

local inlet Maeh number is higher than the free-stream Mach number. The

cause of the remainder of the loss is not fully understood at present.

There are some indications that the nonuniform velocity distribution at

the inlet may be causing some of the additional loss. The difference

which exists between the recoveries of the two shorter body configurations

is considered to be due to slightly different local Mach numbers existing
ahead of the inlet.

w

o

In conclusion, it appears that on circular fuselages the best pres-

sure recoveries at angles of attack are obtained when a scoop inlet is

located on the bottom of the fuselage. If the inlet must be placed on

top, it should, in general, be located as far forward as is consistent

with low-drag considerations. Location of a top inlet farther to the

o_
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rear on a fuselage where it may be affected by the vortex flow will have

a beneficial effect on the pressure recovery only if the boundary-layer

bleed-helght ratio is small and the angle of attack is large. The net

thrust characteristics of top and bottom inlet installations may be com-

parable because of the compensating effects of the drag and pressure-

recovery characteristics. Finally, it appears possible to design rela-

tively simple and efficient boundary-layer removal systems which remove

the low-energy air by diverting it around the sides of the inlet.

t
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RECENT RESULTS ON INLET INSTABILITY

By Carl F. Schueller

Lewis Flight Propulsion Laboratory

w

Supersonic diffusers generally exhlbit steady pressure-recovery air-

flow characteristics in the supercritical or constant air-flow region.

However, rapid flow pulsations accompanied by inlet shock oscillations

are often encountered as the mass flow of air is decreased below its

maximum value, that is, into the region commonly referred to as subcrlti-

cal operation. These large fluctuations in pressure and air flow result

in numerous adverse and often catastrophic consequences.

This phenomenon of buzz was first recognized but not explained by

Oswatisch. In the intervening years many inlets having various amounts

of stability have been reported and a few of them are indicated in fig-

ure 1. The minimum stable mass-flow ratio corresponding to any one of

these points represents the lowest air flow obtained just prior to buzz

on fixed-qeometry conical center-body inlets operating without burning.

Of the inlets surveyed those incorporating excessive drag or pressure-

recovery penalties in order to obtain stabilltyhave been deleted. Admit-

tedly not all the existing literature has been examined and, therefore,

isolated investigations having greater stable subcritlcal ranges than

indicated here may exist. In general, however, this figure is believed to

be representative of the current status and shows that the stable range

decreases slgniflcantlywith increasing Mach number. This decrease is

due not only to the lack of experimental data but also to the presence

of more adverse pressure gradients and curvatures in the high Mach number

inlet designs. Even at the lower Mach numbers the minimum stable mass-

flow ratios reported by different investigators vary from no subcritl-

cal operation, that is, a mass-flow ratio of 1.O, to fairly respectable

values at the lower Mach numbers. Such a wide variation in stable range

emphasized that which most inlet investigators will readily admit, namely

that inlet buzz is a very complex problem. This complexity results from

the many sources of buzz exciting force available in a supersonic dif-

fuser. As a result this paper will concentrate on a discussion of the

known buzz exciting forces and the techniques utilized to counteract

them. Before proceeding further, however, the existing theories which

have been proposed to explain the mechanism of buzz will be reviewed

briefly in order to provide a better insight into the buzz problem.

It has been recognized for many years that a compressor discharging

into a relatively large volume having a fixed orifice will surge during

that portion of its operation when the pressure increases with increasing

air flow, that is, when the slope is positive. The supersonic diffuser

was considered to be analogous to a compressor system in reference 1 and
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it was concluded that a diffuser which had a positive-slope character-

istic would buzz. A slightly different approach which led to the same

conclusion was used in reference 2.

Since a complete cycle of buzz will result in the diffuser air

being alternately accelerated and decelerated, the authors of reference 3

visualized a portion of the diffuser air column to be a plug resonating

against the diffuser discharge volume in a manner crudely analogous to

a Helmholz resonator. The resulting calculations indicated that, if the

positive-slope characteristic were of a sufficient magnitude, the dif-

fuser would buzz with a frequency which depended on its geometry. At

least qualitative agreement with experiment was obtained for the models

considered.

Still another viewpoint on the mechanism of buzz was presented in

reference 4. By means of detailed measurements and calculations it has

been established that longitudinally traveling expansion and compression

waves are present in the diffuser during the buzz cycle. The traveling-

wave argument leads to an accurate prediction by theory of the experi-

mentally determined variation of pressure with time in the diffuser.

The complex nature of the mechanism of buzz is apparent even in this

simplified discussion. However, since an exciting force is required to

initiate the buzz cycle for any of these theories, the known buzz exciting

forces are discussed next.

It was shown in reference 5 that buzz may result from the slip line

crossing the inlet lip. This slip line (see fig. 2) separates two fila-

ments of air which have the same static pressure but different velocities

and total pressures. If no other exciting force is assumed to be present,

the inlet will be stable when the slip line is outside the cowl such as

in figure l(a). As the air flow is reduced by decreasing the exit area

the slip line crosses the inlet (see fig. l(b)) and two filaments of air

having different velocities enter. If it is assumed that there is no

mixing and the static pressure remains constant across the slip line,

then the simultaneous diffusion of the two streams of different total

pressure will require that the outer filament occupy an undue proportion

of the passage. This causes the main flow portion near the center body

to accelerate from a design Mach number of 0.2 to 0.6. As a result, com-

pression waves travel forward and expansion waves rearward (fig. 2(b)).

Based on the work of reference 4, an hypothesis may be that these trav-

eling waves promote the pulsing as follows: the forward traveling com-

pressionwave forces the inlet shock to the position shown in figure 2(c).

In the meantime the expansion waves reflect from the exit as expansion

waves and travel forward decreasing the pressure. Finally the shock is

sucked inside to the supercritical condition shown in figure 2(d). This

causes the inlet to operate at increased mass flow. The exit area can-

not pass all of this air, however, because of the reduced total pressure

P

l
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behind the normal shock. The ensuing accumulation of air flow generates

compression _aves which increase the diffuser discharge pressure and

drives the shock towards the inlet to the condition shown in figure 2(a).

Since the exlt area cannot pass all the air flow corresponding to thls

shock configuration, the terminal shock conti_mes foreword to the position

shown in figure 2(b) and the exciting force is repeated to start another

buzzing cycle.

Another triggering mechanism which acts llke the slip llne just dls-

cussed is flow separation. This can occur on the inside of the cowl lip,

in the subsonic diffuser, or on the center body as shown in figure 3. In

this case, separation occurs because of shock-_ave--boundary-layer inte_ -

action. Again, if we assume no mixing, the low-energy air in the separated

region occupies most of the passage, causing the outer filament to accel-

erate. Because of the inertia effects traveling_aves are again gener-

ated and the shock is moved forward. As it moves forward the cone-surface-

friction shearing stress increases and the tendency to separate decreases.

_ne disappearance or reattachment of the separated flow permits the alr

flow to increase and the normal shock, as shown in figure 3(b), moves to

the position shown in figure 3(a) and the separation reappears, starting

another buzz cycle. From this, the conclusion can be drawn that there

are at least two potential exciting forces, namely entrance of the sllp

line or boundary-layer separation.

The discussion is now restricted to the known techniques for avoiding

or absorbing these exciting forces before they trigger buzz. One tech-

nique available to the desirer is the addition of a constant-area section

in the diffuser throat. This technique _as proposed in reference 6 and

applied by reference 7 to stabilize the normal shock in convergent-

divergent diffusers. It has been applied to center-body type diffusers

with varying degrees of success in references 5, 8, and 9. Such a tech-

nique could provide a mixing length to damp out the exciting force due to

either the slip line or boundary-layer separation.

The model investigated in reference 5 had an extremely long section
of very low divergence which increased the minimum stable mass-flow

ratio approximately 16 percent at M = 1.9 but at the expense of a

significant decrease in pressure recovery. References 8 and 9, on the

other hand, indicated both adverse and beneficial effects of constant-

area sections. Therefore, to define better the effect of diffuser area

variation on stability in the presence of either the slip-line or

boundary-layer exciting force, and to define better.the length of stabi-

lizing section required, a limited but systematic study of the effect of

diffuser area variation on inlet stability has been conducted in the

Lewis 8- by 6-foot supersonic tunnel and is reported in reference i0.

Figure 4 presents some pertinent dimensions of the model used in this

study. The variation of the ratio of local diffuser flow area to dif-

fuser discharge area with axial distance per hydraulic diameter is also
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included. Hydraulic diameter is defined in the usual manner, that is,

four times the inlet annular area divided by the wetted perimeter, and

for spike-type inlets this reduces to the cowl diameter minus the center-

body diameter at the cowl lip station. The solid llne represents the

inlet having the longest stabilizing length and it has a nearly constant-

area section for 3-5 hydraulic diameters after which it gradually expands.

Although not apparent in this figure an area increase of 1 perceut per

hydraulic diameter was included in the first 5.5 diameters of length to

approximately compensate for the boundary-layer growth. The dashed-line

curve represents the other extreme, that is, no stabilizing section, but

a continuous increase in area corresponding to a 6° conical diffuser.

Intermediate stabilizing sections of 1 and 2 hydraulic diameters were

also investigated. It should be noted that all of the diffusers were

faired to a common area in approxomately 9 hydraulic diameters of length.

The effect of these diffuser-area variations on the inlet stability

is shown in figure 5 where the variation of minimum stable mass-flow ratio

with diffuser stabilizing length is presented. The 6° diffuser, zero

stabilizing length, has practically no stable range; however, modification

of this inlet to incorporate stabilizing sections having a length greater

than 2 hydraulic diameters increases the stable range to a mass-flow

ratio of 0.55 for the diffuser having a stabilizing section 3.5 hydraulic

diameters in length even though the slip-line criterion is violated.

This did not decrease the critical pressure recovery from the value of

0.85 obtained with the 6° diffuser. Recent results on a model about one-

half the size of this one and operating at about one-third the Reynolds

number showed even larger gains in stable range due to a stabilizing

section of 3.1 hydraulic diameters. It would thus appear that adequate

stable ranges can be attained up to a Mach number of 2.0. A word of

caution is necessary, however, since the difference between an unsuccessful

and a successful stabilizing section appears to be associated with slight

differences in design detail as shown in figure 6. The solid line repre-

sents the area variation of the 3.5 hydraulic diffuser on an enlarged

scale. The dashed line represents a local area change of 4 percent

occurring in the first 3 hydraulic diameters or 1½cowl diameters in

length. The lowest curve represents a lO-percent change in area which

corresponds to 0.i inch in a cowl radius of 2.7 inches. Unfortunately_

these area changes also involve a slight change in the shoulder radius

of the center body and a shift in axial location of the center-body

shoulder, either of whichmay be affecting the results. In any case,

these local changes adversely affect the stable range as may be noted

by the change in minimum stable mass-flow ratio from 0.55 to 0.84. From

the diffuser-area variations investigated, it may be concluded that a

properly designed stabilizing section of 3-5 hydraulic diameters in

length will provide stable air-flow regulation at a Mach number of 2.0

and an angle of attack of 0°.
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The effect on inlet stability characteristics of operating at angles

of attack other than 0 ° is shown in figure 7 for the 6° and the

3.9-hydraulic-diameter diffusers. The 6° diffuser has practically no

stable subcritical operation for the range of angles of attack investi-

gated. The 3-9 hydraulic diameter diffuser on the other hand maintains

good stability up to about 5 ° after which it rapidly deteriorates. This

abrupt decrease in stable range probably indicates that the mixing length

provided becomes inadequate for: the increased separation on the leeward

side of the center body.

Since the models discussed so far could be subjected to the exciting

force due to separation or the exciting force due to the sllp llne or

both, it was decided to vary the cowl position parameter 8L over a wide

enough range to avoid the slip-line criterion for some conditions. Refer-

ence 9 has shown that the triggering force due to the sllp line can be

avoided by positioning the oblique shock ahead of the inlet. The resulting

calculated minimum stable mass-flow ratios are as indicated by_ the dashed

line in figure 8. Another way to avoid the triggering force due to the

slip llne, at the expense of pressure recovery, is to move the oblique

shock inside the inlet. This had no beneficlal effect on the 6° diffuser

for the range investigated. Since the slip line is too far inside the

cowling to trigger the buzz, particularly for cowling position parameters

greater than 44 °, another exciting force such as separation must be present.

For the 3.9-hydraulic-diameter diffuser the stable range is progressively

increased as the oblique shock is moved inside, and in all cases the

instability, when it finally occurred, was due to center-body separation

without a slip line. This indicates that flow separation may be the more

predominant of the two exciting forces considered here. Therefore, the

various techniques which have been proposed to alleviate center-body

separation will be briefly reviewed.

First of all, scoops can be installed on the center body to remove

the separated flow before it enters the inlet. Also, the boundary layer

can be removed ahead of the terminal shock, which results in a new bound-

ary layer of higher friction shearing stress that is capable of withstanding

a higher pressure rise without separation. Such systems are of practical

application for relatively small decreases in air flow. It is also often

proposed that the boundary-l_yer separation be avoided by increasing the

cone angle in order to decrease the cone-surface M_ch number. This

increase in cone angle decreases the pressure rise across the terminal

shock and alleviates the tendency to separate. Unfortunately, the recom-

mended limiting cone-surface _ach numbers vary from 1.19 to 1.99. The

reason for such a wide variation is believed to be associated with feed-

hack in the boundary layer and is indicated qualitatively in figure 9-

Both of these models have 90 ° cones and are operating at a Mach number of

2.0 and the same Reynolds number. The region of separated flow is much

more extensive on model a than model b. Also model a is just out of

pulsing. Apparently, the significant difference is that model a has a
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rather abrupt but small change in area in the first 2 hydraulic diam-

eters of length as measured from the cowl lip, whereas model b is the

3.5-hydraulic-diameter diffuser. It is believed that the resulting

adverse pressure gradient causes pressure feedback in the boundary layer

and increases the separation for model a. Thus although a separation

crlterionmay be used to predict the occurrence of separation in the

absence of an adverse pressure gradient, application of this criterion

to the prediction of whether the separation will increase or reattach

in diffusers will require a modification which includes any local adverse

pressure gradients.

The previous discussion has shown that the stable range of spike-

type inlets is very sensitive to diffuser-area variation. For example,

at a Mach number of 2.0 the stable range _as increased from a mass-flow

ratio of 0.92 for a 6° diffuser to 0.55 for a diffuser incorporating a

stabilizing section of 5.5 hydraulic diameters in length. Furthermore,

the stability characteristics appear to be very sensitive, in the cases

investigated, to relatively small but rapid area changes at the diffuser

entrance.

u
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INLEt-ENGINE MATCHING METHODS

By John L. Allen

Lewis Flight Propulsion Laboratory

Inlet-engine matching is essentially a problem of relating the

inlet air-flow characteristics to those of the engine so that the net

propulsive thrust of the inlet-engine combination can be evaluated. A

brief review of the matching problem is presented in figure i for con-

stant engine rotational speed at an altitude of 35,000 feet and for a

range of flight Mach numbers. Both inlet and engine characteristics

are presented in terms of corrected rate of weight flow of air evalu-

ated at the diffuser exit or compressor inlet. Since the engine

regulates the air entering the inlet, the inlet will operate along the

engine line. When a fixed-geometry inlet is just large enough for effi-

cient operation at the high-speed condition, as shown by the intersection

of the curves at M 0 = 2.0, the engine requires more weight flow than the

inlet can efficiently provide as flight speed is reduced; this condition

is indicated by the spread between the solid line and lower dashed line.

Consequently, the engine will force the inlet to operate in the super-

critical region. Throughout the flight region below design Mach number

this condition results in total-pressure losses, although the drag

remains at a minimum. Accordingly, the net propulsive thrust is reduced.

A fixed-geometry inlet which is large enough to provide efficiently

the weight flow demanded by the engine at a subsonic Mach number, as

shown by the curve intersection at M0 = 0.85, has an efficient inlet

capacity at higher Mach numbers much greater than that required by the

engine. The distance between the solid line and the upper dashed line

represents an excess of inlet capacity that must be spilled behind a

bow shock with the attendant high additive drag at supersonic speeds;

however, the pressure recovery remains reasonably high. Again, the net

propulsive thrust of the unit is reduced.

Previous conferences and analytical and experimental studies in

several reports have shown that the efficient inlet-performance line

can be shifted to approach the engine curve by varying the geometry of

the inlet. These methods primarily consist of varying the angle or

projection of the compression surface. More complete discussions of

the matching problem can be found in references i and 2.

In order to provide the designer with a greater degree of freedom

in solving inlet-engine matching problems, two additional methods have

recently been investigated by the National Advisory Committee for

Aeronautics. These methods, which literally amount to putting holes
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in the diffuser to let in needed weight flow or to let out excess weight

flow, are shown schematically in figure 2. The inlet geometry is fixed

in each case and the auxiliary inlet or outlet can be located to the

rear of the inlet entrance.

Normal-shock-type inlets are shown in figure 2(a) since present

auxiliary-inlet data are confined to flight Mach numbers of 1.5 and

below. The function of the auxiliary inlet is to supplement the crit-

ical weight flow furnished by the _dersized main inlet at below-design

speeds, as was indicated in figure i. Thus, at the high-speed point,

the auxiliary inlet would be closed and, as flight speed is reduced,
the auxiliary inlet would be opened so that the normal shock would

remain at the lip and supercritical pressure losses would be avoided.

The purpose of the internal a_iliary flap is to equalize the

static pressure where the two flows merge so that the mixing of the

main and auxiliary flows will not result in large total-pressure losses.

Furthermore, if the propulsive tlmust is to be increased, the drag added

by the auxiliary inlet must not be too large.

The function of the auxiliary outlet or bypass (see fig. 2(b)) is

to discharge weight flow in excess of engine requirements and thus avoid

bow-shock additive drag penalties. The bypass is simply a scoop or

nozzle located in the diffuser forward of the engine. The size of the

bypass would be increased as flight speed is increased so that the

normal shock remains at the cowl lip. Again, improvements in net

propulsive thrust will depend on the drag due to bypassing as compared

with bow-shock drag as well as pressure-recovery losses.

The remainder of this paper is concerned with an evaluation of

experimental results of these auxiliary systems.

Small-scale investigations of the auxiliary inlet are presented

in references 3 and 4. Recent preliminary data obtained in the Ames

6- by 6-foot supersonic tunnel for a nose inlet with and without a

fixed-area auxiliary inlet are presented in figure 3. The auxiliary-

inlet area was 11.7 percent of the main inlet area and the external-

drag coefficient is based on maximum fuselage cross-sectional area.

Total-pressure=recovery losses were on the order of i to 3 percent

because of mixing losses and boundary layer admitted by the auxiliary

inlet. This loss was highest at supersonic speeds, probably because

of shock_boundary-layer interaction. The external drag was increased,

because of the auxiliary inlet, throughout the Mach number range. In

order to illustrate the application of these data to the problem of

inlet-engine matching, the data have been replotted and are presented

in figure 4 for flight Mach numbers of 0.70 and 1.5.
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The fixed-geometry data, indicated by the solid line, are for sub-

critical and supercritical flow. The circular symbol corresponds to

critical flow for the main inlet and the triangular symbol represents

the main inlet plus the ll.7-percent auxiliary inlet at critical flow.

A linear interpolation corresponding to variable auxiliary inlet area

has been ass_ed as shown by the dashed line. Incremental drag is the

drag increase from the critical value because of bow-shock spillage

for subcritical flow and because of the auxiliary inlet for weight
flows greater than critical.

In the subcritical region, the pressure recoveries are higher than

those at critical flow and the incremental drag curve has a low slope

indicating appreciable cowl recovery for the cowl profile represented

bythese data. This effect was discussed in a previous paper by
Richard I. Sears.

At a flight Mach number of 1.5, the highest thrust minus drag was

obtained in the subcritical region where pressure recovery could be

traded for incremental drag up to the point indicated by the engine

match line. Accordingly, the inlet size was selected at this condi-

tion of peak thrust minus drag where the inlet area is ab_ 6 percent

greater than that needed for matching at critical flow.

At a subsonic Mach number of 0.7, this optimum high-speed design

is too small and supercritical pressure losses occur as shown by the

engine match line; however, the drag remains at a minimum. Using the

auxiliary inlet increases the pressure recovery from about 0.89 to
0.94 for a drag increase of about 0.02.

Evaluation of these results is presented in figure 5 in the form

of effective thrust ratio which is defined as the thrust at the oper-

ating pressure recovery minus the spillage drag or auxiliary-inlet

drag, as the case may be, divided by the ideal thrust at lO0-percent

pressure recovery. A fixed-geometry inlet sized for a subsonic Mach

number is shown in addition to the high-speed design with and without

an auxiliary inlet.

The fixed-geometry inlet, sized for optimum thrust minus drag at

a flight Mach number of 1.5, operated in the subcritical region down to

a Mach number of about 1.2, and, at lower speeds, supercritical opera-

tion occurred and resulted in low effective thrust ratios. Using the

variable-area auxiliary inlet to avoid supercritical operation resulted

in higher effective thrust ratios at below-design speed as indicated by

the dashed line. At a flight Mach number of 0.70, the effective thrust

ratio of the fixed-geometry inlet was increased 8 percent by means of

the auxiliary inlet. However, if the size of the inlet is increased to

provide optimum thrust minus drag at a subsonic Mach number of 0.8,

slightly higher effective thrust ratios are gotained up to a flight
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Mach number of 1.2; at higher Mach numbers, the effective thrust ratios

are only slightly less. The inlet area for this case is about 17 per-

cent larger than that for the high-speed design; the effect of this

area increase on incremental drag is included in the thrust parameter;

however_ any increase in basic body drag is not included.

Thus_ for the particular engine characteristic and constant-altitude

flight plan considered herein at Mach numbers up to 1.5, the auxiliary

inlet does not appear necessary. At flight Mach numbers higher than 1.5

or for other engine characteristics and flight plans such as a tactical

mission requiring high Mach number operation over a range of altitudes,

the auxiliary inlet may offer higher performance. The auxiliary inlet

would also be useful for improving existing hardware_ for instance_ an

inlet that is too small or for growth situations where an engine having

a larger weight-flow capacity is to be installed in an existing airframe.

At flight Mach numbers higher than 1.5, the spillage required for

a subsonic inlet sizing increases as discussed previously. Also_ at

these higher speeds, sharp cowl lips are generally necessary to avoid

drag penalties. Thus, auxiliary-inlet performance for higher Mach num-

ber designs may be more competitive, although this effect has not been

experimentally demonstrated up to the present time. The auxiliary inlet

may well require a compression surface and control or removal of the

boundary layer so that its performance will approximate more nearly that

of the main inlet.

The bypass system can be used for the oversized inlet that required

large spillage at the high-speed point in order to attain efficient sub-

sonic operation. Data, which were obtained from references 5, 6, and 7

with an axially symmetric spike-type inlet with and without a bypass

system, are presented in figure 6 for flight Mach numbers of 1.6, 1.8,

and 2.0. The inlet had a relatively sharp cowl and the compression sur-

face tip projection was selected so that the conical shock would meet the

lip at M0 = 2.0. The bypass-data points were obtained by using one and

then two fixed-area bypasses having a nearly axial discharge angle. The

dashed line through the symbols represents a variable-area bypass system

that maintains critical inlet flow as diffuser-exit weight flow is

reduced. Spillage-drag coefficient is the increase in drag as weight flow

is decreased. For the fixed-geometry inlet, the spillage drag increases

appreciably as weight flow is reduced. However, spillage-drag coeffi-

cients for the bypass inlet were only one-fifth to one-fourth of those

for equivalent bow-shock spillage for the fixed-geometry inlet, and

diffuser total-pressure recoveries were not significantly changed. The

engine match lines indicate progressively greater spillage requirements

as flight Mach number is increased. Interpretation of these data in

terms of effective thrust ratio is shown in figure 7 for an altitude

of 35,000 feet and an inlet sized at a flight Mach number of 0.85. A

reference curve corresponding to an inlet of variable size or area

operating at critical pressure recovery without drag is also shown and,

b_

o_
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as such, represents the best performance attainable with this particular

fixed-angle compression s_face and diffuser. Over the range of flizht

_ch numbers, the effective thrust ratios for the bypass inlet were con-

sistently higher than those for the fixed-geometry inlet. If the per-

formance at a flight Mach number of 2.0 where the excess weight flow is

about 20 percent of that captured by the inlet is considered, the effec-

tive thrust of the bypass is I0 percent greater than that of the fixed-

geometry inlet and 98 percent of that attainable with critical pressure

recovery and zero drag. At a flight Mach number of 1.6, the required

spillage is smaller and, hence, the effective tbmust ratios attained for

both the bypass and fixed-geometry inlets are comparable.

For this reason the b_ass would probably not be needed at Mach

numbers where the required spillage is small and the drag due to

bypassing or bow-shock spillage becomes small compared to net thrust.

In conclusion, it has been shown experimentally that it is possible

to mix the auxiliary and main inlet flows with rather small pressure-

recovery losses at flight _ch nm_bers up to 1.5. Thus, the performance

of an undersized fixed-geometry inlet that experiences supercritical

operation at below-desicn speeds can be improved by means of an auxiliary

inlet. However, for the engine characteristics and flight plan considered

herein, a fixed-geomet_ inlet sized at a subsonic Mach number imd effec-

tive tbmust ratios comparable to those obtainable by using an auxilia_/

_nlet in conjunction with an inlet sized at a high Mach n_mber. Other

flight plans and engine characteristics may indicate beneficial applica-

tion of the auxiliary inlet. Application of the auxiliary inlet at

flight Mach numbers greater than 1.5 in conjunction with inlets having

efficient compression surfaces remains to be demonstrated.

For the oversized inlet, it was shown that discharging weight flow

in excess of engine requirements by means of a bypass resulted in effec-

tive thrust ratios as r_uch as i0 percent greater than those of a fixed-

geomet_j inlet since the drag due to bypassing was only one-fifth to

one-fourth of bow-shock spillage drag. Thus, two additional methods have

been demonstrated that aid in solving inlet-engine matching problems.
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For the unpubl<shed auxiliary-inlet dataj the following pertinent

area ratios are given:

w

MaximvJn fuselage cross-sectional area

Minimum inlet area
= 6.0

Minimum inlet area

Diffuser-exit area
= 0.685

The engine characteristics given in figure i are used throughout

the paper. However, the relation of absolute values of engine corrected

weighv flow to those of subsequent figures is

w_/8
= 1.116
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TYPICAL TURBOJET AND INLET AIRFLOW CHARACTERISTICS
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RECENT DATA ON DIFFUSER DESIGN

By John R. Henry

Langley Aeronautical Laboratory

INTRODUCTION

In the past a number of successful correlations of performance data

and comprehensive collections of design data for subsonic diffusers have

been accomplished for the general case of favorable boundary-layer veloc-

ity distribution or shape factor at the diffuser inlet (see refs. 1 and 2).

One of the more critical subsonic diffuser problems existing in the air-

craft industry today_ however, is the design and performance of subsonic

diffusers preceded by supersonic diffusers or inlets. For these cases

the boundary layer at the start of subsonic diffusion has been subjected

to considerable pressure rise through shocks and no longer has a favorable

velocity distribution or shape factor. Design and performance information

corresponding to these conditions has not reached a satisfactory state of

development.

In the first section of this paper the problem of subsonic diffusion

downstream from supersonic inlets will be investigated briefly by examining

a breakdown of the measured over-all pressure losses to determine the losses

attributable to the subsonic diffuser.

SUBSONIC DIFFUSION AFTER SHOCK

Supersonic Inlet Pressure Recovery

In order to obtain an idea of the order of magnitude of the problem

of subsonic diffusion downstream from a supersonic inlet the literature

was surveyed and a number of representative total-pressure-recovery data

from references 3 to ll were selected for study. These data are illustrated

in figure 1 for the spike-type inlet. For simplicity the selections were

limited to the case of a single angle spike with no internal contraction

and with the normal shock approximately at the minimum area section. The

plotted points represent, for a number of different geometries, the meas-

ured total-pressure recovery to the exit of the subsonic diffuser expressed

as a function of free-streamMach number. The curves represent the calcu-

lated total-pressure recovery through the shock system for several values

of spike half-angle. The difference in pressure recovery between any

point and the appropriate shock curve represents approximately the loss

chargeable to the subsonic diffusion. It is apparent that in many cases
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the subsonic loss is of the same order as the shock loss, which empha-

sizes the importance of the subsonic diffusion problem.

The data shown in figure i cause one to speculate as to how such

high losses can be generated in subsonic flow. A reasonable explanation

appears to be that the boundary layer, in negotiating the pressure rise

through the normal shock, is drained of dynamic energy to the extent that

a state of flow separation or incipient separation exists at the start of

subsonic diffusion. These phenomena in the past have been referred to as

shock-boundary-layer interaction effects. In order to study these effects

in more detail, one must reduce the measured over-all subsonic loss values

to a loss chargeable entirely to the interaction effect. A necessary step

is to predict what the subsonic loss would have been if the flow had been

free from shock effects.

I

l

4

w

Basic Data Loss Estimate

Subsonic diffuser M of 0.2 loss correlation.- The first step in

obtaining the basic data loss estimate, a value which does not include

shock effects on the boundary layer, was to obtain the loss coefficient

which each diffuser geometry would have had at an inlet Mach number of 0.2.

The loss correlation curves of figure 2, which are based on data from refer-

ences 12 to 18, were used for this purpose. The loss factor K, which is the

ratio of the conventional total-pressure-loss coefficient to the calculated

loss coefficient for a sudden expansion of the same area ratio, is presented

as a function of the diffuser expansion angle 26. The use of the factor K

eliminates the need for a separate curve for each area ratio in the angle

range of 9° or higher. Older correlations of this type ignored the effect

of inlet boundary layer but recent investigations have indicated that a

curve exists for each value of the ratio of inlet-boundary-layer displace-

ment thickness to inlet radius. Note that increasing the relative boundary-

layer thickness up to a value of 0.040 produces significant increases in

the loss factor and that further increases in thickness have little effect

on K.

For expansion angles of 9° or less friction losses become appreciable

and the K factor is no longer independent of area ratio. For this reason,

calculated values of friction K have been plotted for angles from i° to 9° .

The plotted points represent an annular diffuser correlation which is

based on the observation that the annular diffuser loss is greater than an

equivalent conical diffuser by the amount of the extra friction loss of the

annular diffuser. The points as plotted are measured values reduced by the

amount of the extra calculated friction loss and good agreement with the

conical correlation is obtained.
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Effect of inlet Mach number on loss.- In order to obtain a fair

estimate of the loss that each diffuser geometry would have had if the

flow had not been influenced by shock effects, it was necessary to correct

the loss from the low Mach number correlation of figure 2 to values corre-

sponding to the test Mach number at the start of subsonic diffusion.

Increasing the diffuser inlet Mach number is known to have a detrimental

effect on performance for subsonic diffusers which do not have appreciable

friction loss. Most of this depreciation is believed due to increased

values of Reynolds number based on boundary-layer thickness; however, the

increased values of nondimensional pressure gradient must also be respon-

sible for some decreases in performance. A nt_ber of investigations

described in references 13 to 17 have furnished data evaluating this

effect for both conical and annular diffusers over a range of inlet-

boundary-layer thicknesses. The results of these investigations are

given in figure 3 which presents the ratio of the loss coefficient at a

particular inlet Mach number to that f3r a Mach number of 0.2 as a func-

tion of diffuser expansion angle. Each curve corresponds to a particular

Mach number. Results are given for a thin and a thicker inlet boundary

layer. It is evident that the loss coefficient may be approximately

doubled in some cases through increases in the inlet Mach number. Annular

diffuser data up to an expansion angle of 12° have shown little or no

effect due to inlet Mach number. By the use of these inlet Mach number

correction data in conjunction with the low-speed loss data of figure 2

accurate loss estimates can be made for diffusers where shock effects

are absent.

Subsonic Loss Due to Shock Effect

Returning to the analysis of the performance of subsonic diffusers

operating downstream from supersonic inlets, three inlet designs were

investigated: the spike type, the converging-diverging type, and the

normal-shock type. With the shock pattern known it was possible to calcu-

late the Mach number just downstream from the normal shock. The Mach num-

ber in conjunction with the subsonic diffuser geometry provided enough

information to predict, in the manner just described, the loss which the
diffuser would have had in the absence of shock interaction effects. This

basic data loss was then subtracted from the measured over-all subsonic

loss to obtain the shock-boundary-layer interaction loss coefficients

shown in figure 4. The total-pressure loss due to shock-boundary-layer

interaction divided by the total pressure at station 1 is expressed as a

function of Mach number at station 1.

It was reasoned that station i, which is located at a position just

upstream from the normal shock, should be used as a reference station for

the total pressure and Mach number because these variables determine the

strength of the normal shock which in turn should determine the effect of

the shock on the boundary layer. This reasoning is supported by the
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manner in which the data for several relatively high angle subsonic dif-

fusers, the circle points, with various supersonic inlet designs fall

on a single curve.

At a given pre-shock Mach number the losses for the three inlet con-

figurations for comparable subsonic diffusers should vary according to

the differences in the boundary-layer development upstream from the normal

shock. This view is supported by the data because the spike inlet, which

had the largest amount of wetted surface exposed to the supersonic flow

and therefore the greatest opportunity for boundary-layer thickness

development prior to the normal shock, had the highest interaction losses.

For the curve shown for the spike inlets the losses reach values on

the order of lO times the "basic" subsonic diffusion loss. One would

expect extensive separation under these conditions. This view is supported

by the fact that the maximum losses are on the order of one dynamic pres-
sure at the start of subsonic diffusion.

The square symbols in each case identify subsonic diffusers of expan-

sion angles of 5° or less, which produced relatively low losses. This

result suggests that an expansion angle as low as 5° has a favorable effect

on the poor boundary-layer velocity distribution or shape factor delivered

by the normal shock, or in the case of shock-induced separation, the low

angle permits early reattachment.

The effect of a 5° expansion angle on boundary-layer development

downstream from a shock is illustrated by figure 5- The model used to

obtain these data was a converging-diverging inlet; surveys of the flow

were made at several cross sections of the 5° diffuser for several loca-

tions of the normal shock. The data are presented here in terms of

boundary-layer shape factor, defined as the ratio of boundary-layer dis-

placement to momentum thickness. Increasing values of shape factor indi-

cate increasing distortion of the boundary-layer velocity distribution

and high values of shape factor correspond to separated flow. It has

been observed that flow separation does not occur for shape factors below

a value of 1.8 whereas separation almost always exists at values above 2.6.

Shape factor is presented as a function of the ratio of the dis-

tance x, measured from the normal-shock location, to the diffuser diam-

eter at the shock location. Three curves, which correspond to three

different positions of the normal shock, are given with the Mach nttmber

just upstream from the shock indicated in each case. The value of the

shape factor delivered to the normal shock differed in each of the three

cases due to changes, with normal-shock position, of the flow character-
istics between the throat and the normal shock. The normal shock caused

a large increase in the shape factor in the Mach number of 1.52 case

indicating local separation; then the 5° expansion angle reduced these

high shape factors to favorable values within the range below 1.8

J
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resulting in attached flow and reasonable velocity distributions. A

number of investigations of boundary-layer development in higher expan-

sion angle diffusers have indicated progressively increasing values of

shape factor in the x direction, a characteristic which would have

produced extensive separation in the Mach number of 1.35 and 1._2 cases.

These results all support the conclusions relative to the 5° diffuser

performance indicated in figure 4.

Much additional research work is necessary to obtain a complete

understanding of subsonic diffusion preceded by supersonic flow; how-

ever, on the basis of the preliminary analysis presented, certain limited
Conclusions can be formed. To avoid subsonic diffuser losses on the

same order as the shock losses, at least the initial section of the sub-

sonic diffuser should have an expansion angle no greater than 9°. This

indicates a long diffuser or else the use of boundary-layer control.

Many of the usual boundary-layer control types do not appear attractive

for this application, especially if any degree of stream blockage is

involved. If post-shock separation is present, any form of control down-

stream from the shock will be inefficient. Pending the development of

new control concepts, the most obvious solution appears to be to elimi-

nate all boundary layer in the region just upstream from the normal shock

by scoops, bleeds, or wall suction.

DIFFUSES WITH FLOW CONTROL

4'

The second part of the paper will be devoted to another problem,

that of obtaining satisfactory performance from short diffusers for use

where space requirements are severe. The designs required fall in the

range of expansion angles from 15 ° to 45o; stable operation and uniform

exit distributions are paramount requirements. It is obvious that such

operating conditions cannot be met without flow control.

Formsof flow control under investigation are removal of low-energy

boundary-layer air by suction, energization of the boundary layer by

injection, accelerated boundary-layer momentum transfer by use of vortex

generators, and flow control through use of turning vanes and splitters.

An investigation pertaining to the effectiveness of various types

of flow controls as applied to annular diffusers suitable for turbojet

afterburners is now in progress at the National Advisory Committee for

Aeronautics. These data have been reported in part in references 19

to 22. The more important configurations tested are sketched in figure 6.

The same cylindrical outer body was used in all cases while the design of

the inner body was modified. With vortex generators mounted near the

inlet station, three different lengths of inner body were tested pro-

ducing equivalent cone angles of 19 °, 24 °, and 31°. A suction-control
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configuration consisting of two rows of drilled holes on the inner body

has been evaluated. Boundary-layer control consisting of injecting high-

energy air parallel and adjacent to the wall through a circular slot

between the cowl and center plug was also investigated. It was found

that the injection air could not prevent separated flow over a large

portion of the cowl surface, necessitating the installation of the cylin-

drical turning vane as illustrated on the sketch. Injection model per-

formance referred to hereafter will refer to the complete model including

the vane.

Note that two downstream measuring stations, stations 2 and 3, are

indicated on each sketch. Station 2 always corresponds approximately to

the end of the inner body and permits performance comparisons for several

over-all diffuser lengths or equivalent expansion angles. Station 3 is

a common tailpipe station for all the models and is located at a position

corresponding to the end of the 15° diffuser inner body. Measurements at

this station permit performance comparisons for several inner-body lengths

with the same over-all diffuser length.

The inlet conditions correspond to fully developed boundary layer

filling the annulus, inlet Mach numbers up to 0.5, and angles of flow

rotation from 0° to 21° • These conditions appeared for a general inves-

tigation to be as representative as possible from a study of surveys of

typical turbine discharge conditions.

I

Static-Pressure-Coefficient Performance

Static-pressure-rise performance on these two bases with the vari-

ous types of control is presented in figure 7. The static pressure rise,

of course, is an indication of the reduction in mean velocity between

the inlet station and a particular downstream station. It is presented

here in terms of the mean inlet dynamic pressure. For the diffuser exit

or station 2 measurements_ the independent variable is expansion angle.

For the station 3 meast_rements, for which the over-all length or expan-

sion angle is constant, the independent variable of center-body length

in terms of the outer-body diameter was chosen. The curves apply to

vortex-generator control_ and a no-control curve is given for reference

purposes. The circle symbols represent the suction model performance,

and the square symbol represents the injection model.

The vortex-generator control provided substantial increases in per-

formance for all cases. The station 2 measurements indicate, however,

that as the expansion angle increased_ or the diffuser was shortened,

the performance fell off appreciably. If the over-all length of the

diffuser was held constant, station 3 measurements, shortening of the

center body produced little change in performance. This result is pre-

sumably due to the rapid adjustment of the radial velocity distribution

m_
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in the free mixing region between stations 2 and 3 for the shorter center

body cases. The conclusion is reached that the added weight and struc-

ture of the longer center bodies may be saved with little sacrifice to

performance.

The circle points indicate that suction control is much more effec-

tive than vortex generators. Suction control has the disadvantage of

requiring more auxiliary equipment and some thrust penalties if the suc-

tion air is wasted.

The injection control, as indicated by the square symbol, provides

equivalent performance to the vortex generators. The injection would

also require auxiliary equipment. It has an advantage over the suction

in that there is no waste of air involved; however, it is unlikely that

the injection air would have been subjected to the combustion process.

I-

¥

Exit-Velocity Distributions

Uniform velocity distribution at the afterburner inlet and flow

stability are considered prime requisites for this application. A gen-

eral statement concerning the somewhat intangible quality of flow sta-

bility can be made as follows: Manometer and tuft surveys indicated

that control measures which provided significant improvements in the

performance also produced more stable flow. Typical radial velocity

distributions with and without control for all the control systems are

given in figure 8 for both stations 2 and 3- At station 2 vortex gener-

ators produced improvements in the distributions but did not eliminate

separation for the 24 ° and 31 ° diffusers. The suction model, which pro-

duced superior static-pressure coefficients, also produced superior

velocity distributions by maintaining attached flow for the full length.

At the tailpipe station, station 5, with vortex-generator control

the velocity distribution improves appreciably with shortening of the

center body, which also is consistent with the observed static-pressure-

rise performance. Possible flow instabilities associated with flow

separation in the 24 ° and 31 ° diffusers could probably be eliminated by

cutting off the end of the center body just upstream from the separation

point. This type of design is sometimes employed when pilot flame devices

are located on the end of the center body.

The suction and injection data at station 3 indicate good distribu-

tion, as would be expected. It is believed that appreciably better injec-

tion performance is to be had with a model conforming to the contour of

the 31° center-body design, which permits attached flow on the center

body for an appreciable axial distance. Also better injection performance

could have been obtained by realining the injection direction to elimi-

nate the peak velocities near the center line as indicated at station 3-
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The investigations to date have resulted in obtaining good perform-

ance from a diffuser which has a length over maximum diameter ratio of

about 1/2, as compared to a previously accepted value of more than 1.O.

This result has been accomplished under the unfavorable conditions of a

maximum thickness of boundary layer at the inlet and all the area expan-

sion taken on the inner wall. The investigation is not complete; how-

ever, tests of still shorter diffusers indicate that the length-diameter

ratio of 1/2 cannot be significantly reduced without excessive penalties

to performance

e
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JET EFFECTS ON THE FLOW 0_DLR AFTERBODIES

IN A SUPERSONIC S_TREAM

By Edgar M. Cortright, Jr., and Fred D. Kochendorfer

Lewis Flight Propulsion Laboratory
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INTR(DUCTION

Increased attention is currently being directed to the problem of

afterbody aerodynamics. This is a logical result of the fact that

afterbody drag frequently represents an appreciable portion of the

total body drag of aircraft and missiles. In the case of engine-in-

fuselage and nacelle configurations, the problem of predicting the flow

field over afterbodies or boattails is complicated by interference

effects from the propulsive jet which issues from the base of the body.

This Jet disturbs a flow which is already contaminated by heavy boundary

layer and which is subject to wing and tail interference effects. In

addition, the flow is attempting to negotiate the adverse pressure gra-

dient usually present over at least the rearmost portions of the boat-

tail. Clearly, the problem is a complex one.

In the present paper an attempt will be made to summarize some of

the results of current research on the problem of jet effects. Emphasis

will be placed on providing a clear definition of the various phases of

the problem, as well as on presenting some of the important concepts and

parameters which contribute to their understanding. Previous research

on the subject of jet effects on external aerodynamics may be found in

references 1 to 7.

SYMBOIS

AA

AM

Cp

CP A

area of annular blunt base

maximum cross-sectional area of body

P - P0
boattail pressure coefficient,

qo

pressure coefficient at rearmost boattail station,
PA - PO

qo



"': "': : "': : "'" "'" "'" i "" "': "'"iCO_O;NT_L: _ .:: .: :...- i.: ..: .......
@o oe@ • • • go @o

CP B base pressure coefficient,
PB - P0

qo

C !

PB
base pressure coefficient referenced to rearmost boattail

PB - PA
station,

qA

CD drag coefficient,
D

qoAM

CD A annular base drag coefficient for case of base bleed,

D drag force

DA annular base drag force

dis_neter of base

maximum body diameter

diameter of nozzle exit

ow diameter of throat of convergent-divergent nozzle

H total pressure

total pressure of base-bleed air

M Mach number

m_ mass flow of base-bleed air

mj mass flow of jet

m s mass flow of secondary ejector air

NR Reynolds number based on body length

P static pressure

DA

qoAA

m

_w
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Q

PR

PR

q

R

TB

Tj

Ts

VB

Vo

X
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critical pressure-rise coefficient

mean critical pressure-rise coefficient

dynamic pressure, ypM2/2

gas constant

total temperature of base-bleed air

total temperature of jet air

total temperature of secondary ejector air

velocity of base-bleed air at exit

velocity of free-stream air

axial distance upstream of base

angle at rearmost station on boattail, deg

thickness of boundary layer at point where the velocity
equals 0.99 times the local stream velocity

angle of nozzle at the exit station

ratio of specific heats

angle that edge of jet stream makes with body axis immediately
after leaving nozzle

angle that external stream makes with body axis immediately
after separating from end of boattail

Subscripts:

0

A

B

J

measured in free stream

measured at rearmost boattail station with no jet flow

measured in semidead air region of blunt base

jet conditions measured in plane of nozzle exit

_Q
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Consider first some of the experimental techniques which have been

used to gather the data for this paper} in figure 1 are shown four of

the models used to measure jet effects on the flow over afterbodies.

The first model (upper left) utilized a half-sting with splitter-plate

arrangement wherein the unheated jet air was reversed in direction

within the body and discharged through half an afterbody. The two small

strut-mounted models (lower), which provide most of the data presented

herein, differed from each other in that one utilized an oxygen-alcohol

rocket engine for a gas supply while the other utilized unheated air.

Support interference effects are larger for this system. The most

recently utilized is the large-scale strut-mounted model for the Lewis

8- by 6-foot supersonic tunnel (upper right). This model has a gasoline

combustor which makes possible jet temperatures from atmospheric to

2,500 ° R. Forces and pressures on the nozzle and body my be independ-

ently measured.

_o

DISCUSSION

Parameters and nomenclature.- Before the results of this research

are considered, it is necessary to define some of the geometric and

flow parameters inherent in the problem. A typical conical afterbody

is depicted in the upper portion of figure 2. Both the jet and external

flow are from left to right. Important geometric parameters are the

boattail angle or contour and the diameters of the body, the base, and

the nozzle exit. The most frequent parameter involving diameters is

the ratio of the base diameter to the nozzle exit diameter DB/DN, which

indicates the size of the blunt annulus. The pressures of interest

include the free-stream pressure P0' the boattail pressures p, the

pressure just ahead of the base PA' the base pressure PB' and the jet

static pressure pj. In addition, the jet total pressure Hj and total

temperature Tj are of importance.

Now consider some of the nozzle configurations which may be

installed within the afterbody shell and which discharge various types

of jet streams through the exit opening in the base. The simplest of

these is the convergent nozzle, which will be retained in the analysis

for reference purposes even at the higher Mach numbers where convergent-

divergent or ejector nozzles would be required to yield maximum thrust

potential. The convergent-divergent nozzle will have an increasing

ratio of exit diameter to throat diameter DN/D T as the design pressure
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ratio increases. The nozzle exit angle e is not necessarily zero for

this nozzle or for the other nozzles. With the ejector nozzle the ratio

of exit diameter to throat diameter Ds/D P also increases as the design

pressure ratio increases. In addition, however, a supply of secondary

air is provided to cushion the expansion of the primary stream and thus

provide more nearly isentropic flow. Lastly, the case in which air is

discharged into the blunt annular base in order to realize the drag

reducing effects of base bleed is considered briefly.

Jet effects on boattail pressures.- Consider first the question of

jet effects on boattail pressures shown qualitatively in figure 5 for

the case of supersonic flight. The basic physical phenomena are illus-

trated in the lower portion of the figure, which depicts the effects of

the jet from a convergent nozzle on the flow over a 5.6 ° conical boat-

tail. The jet, which is at a higher-than-ambient static pressure at

the exit, expands on leaving the nozzle and thus deflects the external

stream. If the flow were inviscid, a shock wave would originate pre-

cisely at the point of meeting of the internal and external streams and

a pressure discontinuity would exist. The presence of the body boundary

layer with its low-energy subsonic region precludes the possibility of

a discontinuous rise in pressure with the result that the required pres-

sure rise begins ahead of the shock wave, where the boundary layer

thickens and originates compression waves. If the deflection is suffi-

ciently great and the shock wave sufficiently strong for the particular

state of the boundary layer, the flow willbe separated from the boat-

tail inasmuch as the low-energy regions of the boundary layer will be

unable to negotiate the required pressure rise. Translation of these

simple concepts into quantitative form is most difficult with the result

that there is no current method to predict the magnitude of jet effects

on boattail pressures. It may be possible, however, to predict approxi-

mately the onset of separation by use of the critical-pressure-rise-

coefficient concept of Donaldson and Lange (ref. 8) about which more

will be said subsequently. Plotted above the sketch of the boattail in

figure 5 are the experimental pressure distributions for various values

of the Jet static-pressure ratio PJ/Po" For large amounts of over-

pressure, appreciable thrust is seen to exist over the rearmost portions
of the boattail.

Modif_in 5 factors.- Many factors influence the exact nature of jet

effects on boattail pressures. Some of these factors are illustrated

in figure 4. The jet effect will be decreased by reducing the over-

pressure at the exit either by reducing the Jet total pressure or by

adding an expansion section to the nozzle. Also, the presence of an

annular base can partially or entirely shield the boattail from jet

interference, depending on the size of the annulus. This occurs inas-

much as the internal and external streams separate from the body and

meet downstream of the base. The jet then influences the base pressure



! "!!" • ,oi

and will usually not influence the boattail pressure until the base

pressure has risen sufficiently far above the rearmost pressure on the

boattail. The jet effect may be increased by the use of a large boat-

tail angle which both increases the strength of the trailing shock wave

and increases the adverse pressure gradient over the boattail, thus

making it more susceptible to flow separation. Lastly, the use of large

nozzle exit angles may result in a relative increase in the trailing-

shock strength and, hence, an increased jet effect.

With angle of attack or yaw at supersonic speeds, the jet effect

is asymmetrical and causes a destabilizing shift in the body center of

pressure, in addition to influencing nearby control surfaces. Angle-of-

attack effects are beyond the scope of this paper, however.

Jet effects on boattail dra6.- Some Jet effects on boattail pres-

sure drags at a free-stream Mach number near 2 are presented in figure 5

to illustrate the qualitative considerations Just discussed. Consider

the variation with boattail shape of the drag-reducing effect of a jet

from a convergent nozzle. In the case of the three conical boattails

of base-to-body-diameter ratio of 0.5 (broken lines), the drag with no

jet increases considerably as the boattail angle increases. The Jet

interference also increases, however, so that all three experience a

pressure-drag reduction approaching 25 percent at a Jet total-pressure

ratio of 14. The highly sloping (9 = 16° at rearmost station) parabolic

afterbody experiences a much greater jet interference so that at the

higher pressure ratios the drag is reduced to 40 percent and is the same

as that of a more gently sloping boattail. Drag data for the parabolic

body were obtained from force measurements in the 8- by 6-foot tunnel,

whereas the conical boattail drags were obtained from the integration of

pressure distributions on small-scale models (ref. 5). Certain irregu-

larities in the force data have been faired out that may actually have

occurred because of the possibility of abrupt separation on the

boattail.

It may be noted that the larger drag reductions in the case of the

parabolic afterbody were obtained despite the presence of a slightly

larger annulus than was present on the sharp-edged conical boattails,

although annular pressure forces are not included in these drag data.

Actually, a small annulus corresponding to this base-to-nozzle-diameter

ratio of 1.11 appears to afford little shielding of the boattail even

in the case of the low-angle boattails. However, with a larger annulus

of DB - 1.41, the boattail drag for the three conical boattails was

ON
virtually invariant with jet pressure ratio.

The second portion of this figure illustrates the fact that an

increased nozzle exit angle increases the favorable jet interference

g

B

a

o o
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effects both for the convergent and the convergent-divergent nozzle.

The nozzle exit angle was increased 12 ° in the case of the convergent

nozzle, resulting in the indicated downward displacement of the drag

curve. In the case of the convergent-divergent nozzle c was increased

18 ° with the same effect. It may be noted that no appreciable drag

reductions result from the convergent-divergent nozzles until the

nozzle design total-pressure ratio is exceeded.

o

Critical pressure-rise coefficient.- Attention is now directed to

the pressures which act on annular blunt bases. Before looking at the

details of the problem, it is instructive to consider in figure 6 the

concept of critical pressure rise, which was mentioned briefly in regard

to the trailing shock wave separating the flow on a boattail. Consider

the case of a forward-facing step in the presence of a boundary layer.

The detached bow wave which would normally exist ahead of the step in

supersonic inviscid flow creates a pressure rise which is too great for

the boundary layer and causes it to separate. Donaldson and lange

(ref. 8) originally proposed that a critical pressure-rise coefficient

P2 - Pl I
PR = is proportional to (Reynolds number_ _ for turbulent

ql

boundary layers for any given Math number. Additional experimental

evidence reported by Love (ref. 9 ) indicates that the effect of Reynolds

number for turbulent boundary layers is negligible. Love has also shown

that the exper_nentally determined critical pressure rise for a blunt

step is in approximate agreement with that of a two-dimensional airfoil,

if defined as indicated under the sketch 3 and that this pressure-rise

coefficient varies with Mach number. If the blunt step is rearward

facing, data derived from Beastalland Eggink (ref. i0) indicate PR

to be invariant with Mach number at a value of approximately 0.36.

Thus, certain differences exist which require investigation.

If a section of a blunt annulus is considered, it is immediately

apparent that the flow is similar but more complex. In this case the

two streams which separate from the surface of the nozzle and body are

generally inclined at different angles and are at different levels of

pressure, temperature, and Mach number. In addition, the state of the

boundary layers is markedly different in the two streams. As a first

step, however, it is possible to define a mean pressure-rise coefficient

PR which is the average of pressure-rise coefficients based on the

internal and external streams. Unfortunately, the reduction of base,

body, and nozzle pressures to yield a value of P-_ requires a knowledge

of the external and internal stream curvatures after separation since

a two-dimensional solution of this flow field is markedly inadequate.

Most of the values of PR presented herein were obtained with the use

of schlieren photographs to determine jet curvature as well as with the

w
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use of a few existent characteristic solutions for the external flow.

As a result, they must be considered as only a crude first effort

pending more accurate theoretical treatment. This will require the

determination by characteristics of a great many overpressure jet shapes

and_ although they are less significant, the free streamlines of some

separated external flows.

d

o_

The important fact to observe in figure 6 is not the somewhat

irregular behavior of the individual variations, which may be largely

seatter_ but rather that most of the values for the convergent nozzles

at both _ch numbers fall between a PR of 0.3 and 0.4. This is in

the range to be expected from the experiments with steps and wings.
• • O

Although the data are presented only for conlcal boattalls of 5.6 ,

values of _ from 0° to ii ° also yield values of P-_ in this range.

In the case of the convergent-divergent nozzles designed for a pres-

sure ratio of i0.5_ only the case of the small annulus is presented.
This is done since sufficient information to correct the data for three-

dimensional effects was not available; a two-dimensional solution,

which may not be far in error for a small annulus_ was thus utilized.

Again_ the critical pressure-rise coefficient varies only slightly over

a wide range of pressure ratios_ but the values are below those obtained

with a convergent nozzle; a satisfactory explanation for the discrepancy

in values is not known at this time. Attempted correlation of PR and

the two terms of PR with the basic variation of PR with Mach number

for a step as presented by Love (ref. 9) has been inconclusive. In

general_ it can be concluded that the concept of mean critical pressure-

rise coefficient is a unifying one but one which requires additional

study.

Jet effects on base pressure.- Consider now in figure 7 the actual

behavior of annular base pressure for a variety of nozzle and boattail

geometries and for a wide range of operating pressures 1. Base pressure

coefficient is plotted as a function of jet static-pressure ratio for

5.6 ° conical boattails at a Mach number of 1.9. Initial base pressure

coefficients for no Jet flow are indicated on the ordinate. The clarity

of this figure is enhanced if the Jet effect with single base-to-nozzle-

diameter ratio is first studied. For the case of a convergent nozzle

with DB/D N of 1.11, a slight amount of jet flow produces an appre-

ciable increase in base pressure; further increases in jet pressure and

thus Jet flow result in the jet stream tending to aspirate the annulus

to a lower pressure. However, as the jet pressure is increased still

IThese data 3 as well as a considerable portion of the data to

follow, were obtained in unpublished experiments at the Lewis laboratory

_j E. Baughman 3 F. Kochendorfer, and M. Rousso.
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further, the jet expands more and increases the strength of the trailing

shock wave at its juncture with the external stream. The wake pressure

thus increases and the existence of a critical pressure-rise coefficient

forces the base pressure to increase also, as indicated by the data. As

the base diameter becomes larger relative to nozzle exit diameter, the

expanding jet flow curves increasingly toward the axis before meeting

the external flow. Thus, in order to maintain a nearly constant value

of PR, a larger initial expansion angle corresponding to a lower base

pressure coefficient must exist for the given Jet pressure ratio; this

is seen to be the case. The portions of these curves corresponding to

a very low jet total pressures are not included except in the single
illustrative case.

Compressed into the lower end of the pressure-ratio range are the

variations of base pressure coefficient with a convergent-divergent

nozzle having an expansion ratio corresponding to a design total-

pressure ratio of 10.5. A nozzle of this type has a design static-

pressure ratio of 1 and requires a total-pressure ratio of 21 to operate

at a static-pressure ratio of 2. It can be seen that the variations are

essentially parallel to the corresponding variations with convergent

nozzles (if the portions of the convergent-nozzle curves which turn in

the positive direction at low pressure ratios are neglected) but are

displaced slightly in the positive direction. A single variation

obtained with an ejector nozzle designed for the same pressure ratio is

included and is seen to fall somewhat higher than might be expected from

the other data. It is believed that there is a logical reason for this,

however. The secondary weight flow, which was 4 percent of the primary

ms = 0.04_, created a layer of relatively air around
low-energy

mjT_--S--s/T J /
the primary jet stream which would be expected to lower the critical

pressure-rise coefficient and thus increase the base pressure.

For a practical comparison of the effects of jets from a convergent

and convergent-divergent nozzle, consider the case of a jet total-

pressure ratio of 10.5 corresponding to a turbojet engine at a Mach num-

ber of 1.9. The convergent nozzle with its static-pressure ratio near

5-5 generally increases the base pressure over its no-flow value except

for extremely large annuli and may generate appreciably positive base

pressures. The convergent-divergent nozzle (e = 0), however, with its

jet static-pressure ratio of 1 decreases the base pressures below the

no-flow values with the resulting tendency to create relatively large

base drags. An additional point of interest in this figure is the fact

that replacing the idealized blunt base with a 45 ° bevel, such as might

occur with an iris or clamshell nozzle, did not greatly alter the basic

variation of base pressure with jet pressure. The same result was found

true with a convergent-divergent nozzle.
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This entire family of pressure variations for the convergent

nozzle could be crudely reproduced theoretically starting with only a

value of P-R = 0.35, with the possible exception of the DB - i. ii

variation. An indication of the approximate order of accuracy is given

by the fact that for the case of --DB= 1.4 and --PJ-- 4 a variation of

P0
0.04 in PR results in a variation of 0.04 in base pressure coefficient.

It should again be cautioned, however, that a more accurate analysis of

this approach is required.

_o

Effect of stream Mach number.- The effect of stream Mach number on

these characteristic curves is shown in figure 8, in which the data at

a Mach number of 1.9 are reproduced, in part, for reference. At the

left are shown data obtained at a Mach number of 0.9 and at the right

are shown data obtained at a Mach number of 3.1; the same boattails and

nozzles were used throughout.

In order to obtain the data at a Mach number of 0.9, the afterbodies

were mounted on the end of a pipe which extended through the tunnel bell-

mouth into the cylindrical test section (unpublished research by R. Salmi

of the Lewis laboratory). With no jet flow the base pressure was found

to vary considerably with boattail shape. As the extent of boattailing

increased, corresponding to lower values of DB/D N and smaller bases,

the external stream was diffused further prior to separation at the

base; hence, the base pressure increased. Boattail angle also had an

appreciable effect, but treatment of this parameter at subsonic speeds

is beyond the scope of this paper. The action of the jet bears a cer-

tain similarity to that observed at supersonic speeds. With a small

annulus the expanding Jet tends to impede the flow near the annulus with

a resultant increase in pressure. Since subsonic flow will tolerate no

abrupt changes, these increases in base pressure are also indicative of

increases in pressures on the boattail. For large base annuli, the Jet

turns axially before meeting the external flow in this pressure-ratio

range and, rather than decelerating the flow, pumps the base and boat-

tail pressures to lower values; higher jet pressure ratios, however,

reverse the direction of the curves as at supersonic speeds. Comparison

of the curves with those obtained at a Mach number of 1.9 in the same

pressure-ratio range shows the general resemblance at the two Mach num-

bers as well as the larger spread in base pressure coefficients existing

at the high subsonic speeds.

w

At a Mach number of 3.1, the effect of increased Mach number in

reducing the total spread of this family of crrves is again seen; the

jet effect on base pressure coefficient is appreciably reduced. The

correlation of the effect of convergent and convergent-divergent nozzles
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is even more striking at this Mach number where, for the same jet

static-pressure ratio, the base pressure is nearly the same with either

nozzle type (if the very low pressure-ratio range of the convergent

nozzle is again neglected). In addition, for the case of a diameter

ratio DB/D N of 1.4, convergent-divergent nozzles designed for pres-

sure ratios from 10._ to _0 yielded essentially the same base-pressure

variation. Again, the no-flow values of base pressure are indicated on

the ordinate but are unlabeled since they follow the same order as the

curves with flow. It can again be seen that, with the range of annulus

size likely to be encountered (DB/D N __ 1.4), the convergent nozzle

usually produces base thrusts at values of Jet static-pressure ratio

corresponding to the various flight Mach numbers. With the same annulus

sizes the convergent-dlvergent nozzles generally produce base drag at
supersonic speeds.

Effect of boattail 6eometr_.- The base pressure coefficients which

have been presented so far have been obtained with a specific family of

afterbodies. Changes in afterbody geometry do not alter the basic trends,

provided the flow remains unseparated over the boattail, but they do

change somewhat the pressure level of the family of characteristic

curves. For two convergent nozzles the effect of changing conical boat-

tail angles is shown in figure 9- The data were obtained with a jet

total-pressure ratio of 8, but the analysis applies to other pressure

ratios as well. Two forms of base pressure coefficient, the conventional
! t

CPB and also C_B are utilized. The base pressure coefficient CPB ,

originally used by Chapman (ref. ii) for bodies of revolution, essen-

tially references the base pressure to conditions Just ahead of the base

and is thus a measure of the change ir_ pressure from the end of the boat-

tail to the base. Adding C' to the pressure coefficient just upstream
PB

of the base yields CPB approximately.

As the boattail angle increases, the expansive turning at the base

decreases and may even turn to compression; the value of C'
PB thus

increases in the positive direction. However, with a fixed base diam-

eter the pressure ahead of the base generally decreases, resulting in

only a moderate variation in the conventional base pressure coefficient

with boattail angle in this case. The solid lines are predicted vari-

ations which were obtained from the data for 6 = 5.6 ° and from assump-

tions similar to those of reference _ which have had limited success in

estimating the effects of boattail shape on base pressure with no Jet at

supersonic speeds. The flow separation angle _ is calculated from the

initial data and is then assumed to remain invariant with boattail shape

for the particular jet pressure ratio and value of DB/D N. Combining

the resulting values of C'
PB with values of CPA predicted for inviscid
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flow by reference ]2 yielded the indicated variation of CPB; agreement

with experiment is not always this good, however, and the method breaks

down if the flow separates ahead of the base. In order to illustrate

this assumption further, if the boattail angle is held constant and the

nozzle scaled up to yield a shorter boattail while maintaining the fixed

value of DB/DN, the following condition would be predicted to result:

The pressure ahead of the base would decrease without a change in the
value of C'

PB and would thus lower the base pressure coefficient CPB

below the value obtained with the longer boattail. The successful

application of this simple estimate in some cases may fortuitously result

from the possiblity that a fixed value of _ is not greatly at variance

with a fixed value of mean critical pressure-rise coefficient PE" The

following table presents values of CPA for the afterbodies considered

herein to permit conversion of CPB to C'PB for use with other after-

body shapes:

6

3

5.6

7
ii

5.6

Values of for -
CP A

DB = 2.67 -2.0
oB

- 1.67 - 1.4 - l. ll

MO = 1.9

0.018 -0. Ol 0

-o. oo5

-o. o49

O.05

_=5.1

-0.016 -0. O4 -0. o27 -o. oe2

Effect of nozzle exit an_le.- It was shown in the case of jet

effects on boattail pressure that increasing the nozzle exit angle

increases the strength of the trailing shock and, hence, the interfer-

ence effect. From a consideration of PR the same result with an

annular base may be expected. In figure lO the effect of nozzle exit

angle on base pressure is shown for the case of three nozzle angles in

two afterbodies at M0 = 1.6. Pertinent geometric parameters are indi-

cated. The data, which were obtained by Carlos A. deMoraes at the
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Langley laboratory with solid propellant rocket gases, clearly indicate

that increased nozzle exit angles increase the annular base pressure.

Effect of 4et temperature.- The consideration of rocket gases gives

rise to the problem of the applicability of data obtained with unheated

jet fluids. This problem is considered in figure ll. In the left-hand

portion of the figure, data were obtained with a fixed model geometry

with unheated air, unheated C02, and the products of combustion of an

oxygen-alcohol rocket used for jet fluids. The use of CO 2 with a 7

(ratio of specific heats) of 1.3 produced a moderate upward shift in

the curve. The rocket gases produced a much larger increase in the base

pressures. In the right-hand portion of the figure, data are presented

which were obtained with the large-scale model in the 8- by 6-foot tunnel

with unheated and heated air. The effect of heating the air to 2,900 ° R

was to raise the curve slightly. Thus, it can be seen that the use of

data obtained with unheated air is conservative in that the values of

base pressure are too low.

Analysis of the temperature effect is complicated by variations

in 7, Tj, and R, which affect the jet shape and mixing and, hence,

the value of pressure-rise coefficient PR expected across the trailing

shock. The results of a simple empirically derived calculation to esti-

mate the temperature effects by consideration of the 7 of the jet are

presented, however. The assumptlonwas made that the jet total pres-

sures which will produce the same base pressure for various values of 7

and any given nozzle-afterbody combination are those which yield the

same value of jet exit angle v. With this assumption it is possible

to correct the data at 7 = 1.4 to other values of 7 as indicated by

the dashed lines. As can be seen, this correction appears adequate for

correlating the air and CO 2 data from the small-scale experiments, as

well as the hot- and cold-air data from the 8- by 6-foot tunnel; in addi-

tion, the correction correlates boattail pressure drags for the latter

model. The good agreement is perhaps fortuitous since the da_a obtained

with a rocket are not predicted with even the lowest possible value

of 7- Several considerations in the rocket tests, such as the unknown

temperature and velocity distributions at the nozzle exit, the possi-

bility of burning downstream of the nozzle exit, and the appearance of

an unburned layer of liquid alcohol flowing over portions of the

internal nozzle surface make conclusions difficult, however. Additional

research is obviously required.

Effect of Re_rnolds number.- Another question which arises in con-

sidering the validity of small-scale unheated jet effects is the influ-

ence of Reynolds number, which has been investigated briefly as indi-

cated in figure 12. The effective Reynolds number of a turbulent

boundary layer was varied in three ways and the influence on jet effects
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determined. In the first case, Reynolds number NR was varied by

running similar models in the Lewis 18- by 18-inch supersonic tunnel

(M = 1.9) and in the 8- by 6-foot supersonic tunnel (M = 2) at values

of NR of 5.5 × 106 and 35 × 106, respectively. The jet effects on

base pressure were nearly the same. Also, at a Mach number of 1.9 and

a low Reynolds number, the thickness of the boundary layer ahead of the

base was increased _ times by artificial transition (ref. 5) with only

a small increase in base pressure. Lastly, at a Mach number of 3.1,

the Reynolds number was appreciably increased by a change in tunnel

pressure with only a slight decrease in base pressure. It might thus

be concluded that_ as in the case of plain bodies of revolution_

Reynolds number has only a small effect on base pressure provided the

boundary layer is turbulent ahead of the base. This result is com-

patible with the fact that critical pressure-rise coefficient is rela-

tively independent of Reynolds number for turbulent boundary layers.

Annular base bleed.- It is now of interest to consider in fig-

ure 13 the case in which a blunt annulus is present and it is desired

to reduce the drag by discharging air from the annulus as proposed in

reference 12 (also see ref. 14). Since blunt bases with convergent-

divergent nozzles exhibit the most drag_ it would be desirable to study

such a case_ however_ because of model limitations it was necessary to

simulate this case with a convergent nozzle at low pressure ratio. The

base drag coefficient (based on annular base area) with bleed flow may

be expressed as the sum of three terms: (1) that due to base pressure_

(2) that due to exit velocity, and (3) that due to inlet momentum (con-

sidered herein as free-stream momentum with m 0 = mB). The sum of

terms (1) and (2) is the exit total momentum. This quantity drops

rapidly from a positive to a negative drag (thrust) as the bleed total

pressure increases. As shown in the right-hand portion of the figure_

the bleed weight flow also increases. If the bleed air is charged with

the full free-stream momentum ((1) + (2) + (3)), there is only an ini-

tially small reduction in drag and then an increase which levels out

with large weight flows. Thus, as in the case of plain bodies of revolu-

tion, if air is to be taken aboard for the express purpose of reducing

base drag_ it should not come fr_n a free-stream inlet but rather from

a low-energy source. For example, the data indicate that a bleed flow

parameter of 1.7 percent of the jet flow could be obtained by venting

the annulus to ambient static pressure. If the induced flow came pri-

marily from the low-energy region of the boundary layer with negligible

momentum charge, the base drag would be eliminated. In cases in which

the air must be taken aboard for air conditioning or tail-pipe cooling,

the inlet momentum charge to the aircraft cannot be avoided and it

appears that a blunt annulus, if present, is a good place to discharge
the air.
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_se-b_ni_ schemes such as those suggested in references 15
and 16 may be very effective in reducing base drag but are more difficult
to apply to aircraft.

Total _fterbod_ drag.- Many of the important parameters influencing
jet effects on base pressure have now been considered. Figure 14 is

presented to illustrate both the utility of the data and the fact that

annular base pressure may influence the choice of afterbody designs.

Afterbody drag coefficient including jet interference effects is pre-
sented as a function of the ratio of base diameter to nozzle exit diam-

eter for both convergent and convergent-divergent nozzles with the same

throat areas and with axial exit flow. The curves are predicted with
the aid of the data contained herein as well as from the results of ref-

erences 5 and 12. Only the case of a small boattail angle is considered

at a Mach number of 1.9 with a Jet total-pressure ratio of I0. In the

case of the convergent nozzle, the total afterbody drag decreases

slightly as the base diameter is increased because of positive pres-
sures (thrust) on the annulus. Furthermore, a relatively large base

annulus may be utilized without incurring any drag penalty at this Mach

number. In the case of the convergent-divergent nozzle designed for a
pressure ratio of i0, however, the drag is indicated to increase immedi-

ately as an annulus is added. It is thus desirable to keep the size of

the base annulus to a minimum in order to avoid costly drag penalties.

CONCLUDING REMARKS

In conclusion, it may be said that sufficient investigations of the

problem of jet effects on boattail and base pressures have been conducted

to clarify many of the important parameters. With the use of existing
data and some of the concepts presented herein, it appears possible to

estimate to a crude order of accuracy the drags of many afterbody-nozzle

combinations. Thus, although the results may not serve to provide pre-

cise drag calculations, they can serve as a guide to good-afterbody-

design practice. Finally, while answering some questions, these studies
have served to point out additional problems which are in need of
investigation.

e
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It has been shown that a jet issuing from the rearward end of a

body at supersonic speeds can have considerable effects on the pressures

acting on the base annulus and in certain cases on the boattail. The

induced forces produced by the jet on surfaces downstream of the jet exit

can also be expected to be of major importance. Until recently, this prob-

lem has been avoided by designers because there was little information on

these jet effects and because satisfactory aircraft cor_igurations were

obtainable without placing any surfaces in the vicinity of the jet blast.

More recently, it has become desirable to have the jet exit in such a

position that large surfaces are in the vicinity of the jet blast. An

example maybe an engine location well forward in the fuselage or a

nacelle installation in which the jet exit is ahead of the wing trailing

edge. In addition, there are configurations where a rear fuselage loca-

tion is chosen, but a large portion of the fuselage extends beyond the

jet exit for better fairing or other reasons. An example of this is a

model of a delta-wing aircraft configuration recently tested by Lar_ley

Pilotless Aircraft Research Division and shown in figure 1. For this

model, a specially modified solid-fuel rocket was used to simulate the

characteristics of a turbojet exhaust.

Jet-effect results were obtained at Mach number 1.5. The effect of

the jet was to induce negative pressures on the area behind the exit.

A plot of the pressure coefficient on this area is shown. This negative

pressure, of course, tended to pitch the nose of the model down.

In this case, there is little or no free-stream flow between the jet

and the adjacent surface. The overexpansion of the jet causes the nega-

tive pressures on the surface. A more important case is where the jet

boundary is not isolated from the external flow, and the interference of

the jet on the external flow predominates in the aerodynamic effects pro-

duced. Some idea of this type of jet effect upon the surrounding flow

field maybe obtained from figures 2 to 4.

Figure 2 shows schlierens taken in the Langley 8-foot transonic tun-

nel and at M = 1.1. The jet stagnation temperature was lO00 ° F. This

temperature was achieved by the combustion of ethylene and air. The

model has a sonic exit and the pressure ratios (Hj.p o) shown are 2, 4,

and 5.5. At the lowest pressure ratio, the jet emerges with little or

no disturbance upon the free stream. At higher pressure ratios, shocks

are generated in the external flow. These shocks are caused by the
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a_ further downstream resulting from the _ch diamonds in the jet.

Figure 3 shows shadowgraphs taken at the preflight jet of the Langley

Pilotless Aircraft Research Station at Wallops Island, Va., and are at a

free-stream Mach number of 2.02. A sonic helium jet was used. Pressure

ratios (Hj/Po) shown are 3, 5, and 7. Two shocks in the free stream which

originate at the jet can be seen. These shocks are caused by the original

expansion bulge and the bulge caused by the first diamond. It should be

noted that the second shock moves rearward as the pressure ratio is

increased.

m

a

%

Figure 4 shows schlierens taken in a 9-inch blowdown jet at the

Langley laboratory. These schlierens are for Mach number 3 and use a

sonic, unheated air jet. The model is at an angle of attack of 8° .

Pressure ratios (Hj/Po) shown are ll.4, 22.7, and 38.0. It can be seen

that the shock wave in the external flow caused by the initial expansion

of the jet starts well forward on the lee side of the boattail because

of the separated boundary layer.

In order to study the effect of a Jet on adjacent surfaces in the

external flow, an investigation using the preflight jet of the Langley

Pilotless Aircraft Research Station at Wallops Island, Va., has been ini-

tiated. Preliminary results from this investigation are presented in

this paper.

In this investigation, made at M = 2.02, a model simulating a turbo-

jet nacelle was mounted in the vicinity of a flat surface simulating a

wing as shown in figures 5 and 6. The nacelle was tested in the four

vertical positions shown. These were 0.93, 1.45, 2.39, and 3.40 jet diam-

eters below the wing surface. Static pressures were measured on the wing

surface at the various positions shown. The measured pressures were used

to determine the forces induced on the wing. The tests were conducted at

approximately sea-level free-stream conditions.

m

In these tests it was desired to simulate the jet of an afterburning

turbojet with a sonic exit. Since it was impractical to use hot gases in

these tests_ simulation of a turbojet exhaust was attempted by using light

gases which would have high sonic velocities.

In order to determine whether it was necessary to duplicate the jet

velocity of the turbojet, tests were made with three gases at ambient tem-

perature for the jet. These were air, helium, and a mixture of 58 per-

cent CO 2 and 42 percent H2. Properties of these gases and the resulting

jet properties are given in the following table. This comparison is made

for a sonic exit area of 5 square feet and a gross thrust of 15,500

Q_
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at 35,000 feet. The properties of a typical afterburning turbojet'are.
also listed for comparison.

.=

Condition Air I He 58% C02 + 42% H2 Turbojet

7

R (gas constant)

Stagnation temperature, OR

Mass flow, lb/sec

Total pressure, lb/sq ft

Static pressure, lb/sq ft

Velocity, ft/sec

Density, slugs/cu ft

1.4

533

52o

32O

284o

15oo

1020

O. 00202

1.66

367

52O

130

2770

1343

2760

O.OO029

1.4

342

52O

126

284o

15oo

259o

o.ooo3o

1.26

537

34oo

125

288o

1593

2520

0.00031

Figure 7 gives a comparison of the jet effect of the three artifi-

cial jets on the row of static pressures which were measured directly in

llne with the jet axis. This comparison was made with the nacelle in

the highest position, that is, with the exit located 0.93 diameters below

the wing surface.

The important differences in the three gases were in _ (which

would set the shape of the Jet boundary if there were no mixing) and the

jet-velocity-to-free-stream-velocity ratio (which will determine the

amount of decay of the Jet boundary due to mixing). The jet velocity

for He and the H2-C02 mixture was approximately 20 percent greater

than the free-stream velocity, whereas the jet velocity for air was less

than half the free-streamvelocity.

In figure 7, the pressure coefficients produced by the jet for a
!

Jet pressure r_tio of 8_Hj= 8_ is plotted against the downstream dis-
k Po /

tance frcm the exit in jet diameters. Two pressure peaks, produced by
two shock waves in the free stream by the disturbance of the jet are

shown. The upstream shock originates at the jet exit and is generated

by the initial expansion of the Jet gases. The farther downstream shock
wave is generated by the second expansion of the Jet as it forms its
first diamond.

d_
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When the three curves are compared, it will be noticed that, whereas

there are slight differences between the profiles produced by the light

gas jets, the profile produced with the air jet is noticeably different

in the region of the second shock. In view of the differences in the

properties of these gases, some differences in these pressure profiles

should not be unexpected.

Although the H2-CO 2 mixture is thought to duplicate more closely

the turbojet gas, the remainder of lhe tests were conducted with helium

since both these gases essentially produced the same results. By using

helium, which is a pure gas, standardization of the jet properties was

assured.

In figure 8 are shown the results from tests with the nacelle

located in four vertical positions. These results are for a pressure
/ \

(Hi) of 8 with a helium jet. Pressure coefficients on the
ratio Po

wing

% 1

directly above the nacelle are again plotted against the distance down-

stream from the exit in exit diameters. Two curves are shown corre-

sponding to the power-on and power-off condition. The difference in

these curves will thus be an indication of the pressures induced by the

jet flow. It should be noted that, as the nacelle is moved downward away

from the wing, the pressure peaks move rearward and decrease slightly.

However, the general pattern remains essentially unchanged. These pres-

sures induced on the wing can therefore be attributed to shocks produced

in the external flow by the shape of the jet boundary. This conclusion

has been substantiated by the examination of shadowgraph pictures.

Figure 9 shows the pressure profiles measured to the side, as well

as directly above the exit, when the nacelle was tested in position B.

It should be noted that pressure peaks diminish only slightly and move

rearward for the outboard positions. This result is in agreement with

the expected location and strength of the shock waves generated by the

jet in the external flow.

It might be expected that these disturbances on the wing could be

somewhat alleviated by directing the jet axis away from the wing. This

effect was investigated by making a test with the nozzle axis deflected

i0 ° down. The results from this test are shown in figure i0. It should

be noted that in order to obtain this deflection the nacelle center line

was abruptly turned i0 ° two exit diameters ahead of the exit. Thus,

although these results are for the exit in position B, the nacelle itself

is in a higher position than the undeflected exit nacelle location. When

comparison of the flow field for the i0 ° deflected exit and the unde-

flected exit is made, it can be seen that no apparent alleviation from the

strength of the shock waves has been obtained. The first pressure peak

for the deflected jet is not only farther forward but is stronger. Study
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of shadowgraph pictures reveals that in this case the shock originates

slightly ahead of the exit where the flow appears to separate on the

upper surface of the boattail. The fact that the nacelle for the

deflected case has been bent and is located in a higher position proba-

bly accounts for this difference as well as for some other differences

in the flow fields shown. For instance, in the case of the deflected

jet, lower pressures ahead of the first peak are. shown.

In these tests only a limited area of the wing surface was surveyed,

as can be seen by looking at the orifice locations again (fig. ll).

Qualitative results, however, can be obtained for the induced lift and

center of pressure for that area in the region of the pressure orifices.

Figure 12 shows the results obtained for the undeflected jet tested in

the four vertical positions. The lower curve shows the induced llft

(that is, integrated lift from pressure coefficients with power-on minus

the llft from pressure coefficients with power-off) divided by the gross

thrust of the jet plotted against jet pressure ratio _oo " The upper

curve shows center-of-pressure locations for the induced lifting force.

The center of pressure is located as the number of jet diameters down-

stream of the jet exit. It can be seen that induced lift equal to the

gross thrust was encountered at low Jet pressure ratios. The lift-to-

thrust ratio decreases with increase in jet pressure ratio. There appears
to be no definite trend in the lift-to-thrust ratio for the different

vertical nacelle locations. This result can be attributed to the limited

surface area for which the pressures were integrated. Probably, if the

integration of the induced lift were made over a sufficiently large area,

there would be no noticeable difference in lift in going from one location

to the next. The center of the induced pressure is shown to be farthest

rearward for the lowest nacelle position, the intermediate nacelle posi-

tions having intermediate center-of-pressure locations.

It has been shown that considerable forces can be induced on nearby

surfaces by a jet issuing in a supersonic free stream. The underexpanded

jet expands abruptly at the exit and acts as a strong disturbance from

which shock waves are generated. Additional disturbances are produced

downstream by the Mach diamonds in the jet. Since deflecting the jet

does not appear to lessen the strength of the shocks, the only way that

induced aerodyanmic forces from an underexpanded jet can be completely

avoided is not to have aerodynamic surfaces within the shock field of

the jet. At Mach number 1 this condition would mean that the jet exit

would have to be at the rear of the aircraft. However, it has been shown

that these jet effects are beneficial to the extent that an underslung

nacelle exit will provide additional induced lift. The effect of the

jet disturbance on the dra _:z ct to be investigated. However, since

the underexpanded jet acts like a strong source, it appears likely that
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erly located with respect to the changes in cross-sectional areas
defined by the "area rule."
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THE EFFECTS OF OPERATING PROPELLERS ON AIRPLANE

STABILITY AND PERFORMANCE

By Robert M. Crane

Ames Aeronautical Laboratory

m

i

The use of turbine-propeller powerplants for high-performance air-

planes, especially those designed for long-range operations at high

subsonic speeds, has been suggested by many design studies made by the

NACA and by other agencies. One deterrent to the development of such

airplanes has been the imperfect knowledge of the effects of propeller

operation on the low-speed stability and control and on the high-speed

performance. While these power effects have had to be contended with

in the past in the design of propeller-driven airplanes, there has been

a hesitancy to apply the results of our past research to the case where

the engine powers are greater by a factor of about 5 and the propeller

disk loadings are increased by a factor of as much as 8. In order to

achieve the high-speed performance desired of such airplanes, wing sweep

is indicated and little if any knowledge has been available of the effect

of a propeller slipstream on the flow over a swept wing at either high or

low speeds.

It is the purpose of this paper to s_ize some of the results

obtained from NACA studies of the effects of propeller operation at

large engine powers on the aerodynamic characteristics of a single-

engine and of a multiengine swept-wing airplane including data at Mach

numbers up to 0.90. The case of a twin-engine tractor installation on

a straight-wing airplane has recently been reported in reference 1.

Analysis of the wind-tunnel data for the cases of the swept-wing con-

figurations is not yet complete, but certain trends are indicated which

are felt to be of general interest.

The half-span powered model of a four-engine swept-wing airplane

arrangement which was tested in the Ames 12-foot pressure wind tunnel

is shown in figure 1. The wing has 40 ° of sweep and an aspect ratio

of lO. The nacelles are located at 29 and 50 percent of the semispan

and house electric motors driving single-rotation supersonic propellers.

If the model is assumed to be 1/12 scale, the wing area is 2000 square

feet, the propeller diameter is 14 feet, and the power conditions simu-

lated at high Mach numbers are as large as 5000 horsepower per engine

at an altitude of 40,000 feet or 20,000 horsepower per engine at sea

level. A complete description of the model and the results of tests

without operating propellers will be found in references 2, 3, 4,

and 5.
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"" "'" " In the following discussion of this airplane arrangement, the

propeller thrust coefficient and the amount of engine power simulated

are based on the measured thrust and efficiency of the propeller in-

stalled on an isolated nacelle and operating at the same propeller

blade angle, advance ratio, Mach number, Reynolds number, and angle of

attack as on the complete powered model. The propeller characteristics

and the measured upwash at the propeller planes have been reported in
references 6 and 7.

The effect of propeller operation on the static longitudinal

stability at high Mach numbers can be seen from figure 2. On the left

of the figure is the tail incidence required for trim as a function of

Mach number and on the right is the tail incidence for trim as a func-

tion of normal acceleration at a Mach number of 0.80. Comparison is

made between the condition of propellers operating at the power required

for level flight at an altitude of 40,000 feet and the condition of

propellers removed. Operation of the propellers is destabilizing as

evidenced by the reduced variation of tail incidence with both Mach

number and normal acceleration. These effects of propeller operation

on longitudinal stability are small at these high speeds and the low-

speed data must be examined to assess this particular factor.

Before the low-speed power effects on stability are discussed,

however, there is another possible effect of propeller operation at

high Mach numbers which should be examined. This is the effect of the

propeller slipstream on the drag of the wing-nacelle-fuselage combi-

nation both as it affects the total drag and the Mach number for drag

divergence. Since the velocity in the slipstream is higher than the

free-stream velocity, some decrease might be expected in drag-divergence
Mach number due to operating propellers. Figure 3 shows the variation

with Mach number_ at a lift coefficient of 0.40, of the increment in

drag coefficient above its value at a Mach number of 0.70 for several

different values of propeller thrust coefficient and with propellers

removed. At a Mach number of 0.80, a T c of 0.03 corresponds to

5000 horsepower per engine at 40,000 feet. The Mach number for drag

divergence was little affected by operation of the propellers; but s at

supercritical Mach numbers, the drag rise with increasing Mach number

was reduced a considerable amount with increase in propeller thrust

coefficient. This reduction is due_ in part_ to the fact that operating

the propellers at a thrust coefficient as large as 0.03 increases the

wing lift-curve slope about i0 percent. The same lift coefficient can

thus be obtained at a lower angle of attack which tends to reduce the

shock-induced separation on the outer portions of the wing for this

airplane configuration.

Consider now the low-speed data on this same model. Figure 4 shows

the variation of pitching-moment coefficient with lift coefficient for

S
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the model with propellers removed and for two different power conditions:

power required for level flight and I0,000 horsepower per engine. Lines

of constant angle of attack are shown on the figure to indicate the large

gains in lift-curve slope accompanying operation of the propeller. With

the propellers absorbing i0,000 horsepower per engine, the negative slope

of the pitching-moment curve has decreased a considerable amount compared

with that for propellers off, indicating a decrease in the static longi-

tudinal stability due to propeller operation and a corresponding decrease

in the variation of stick position with airspeed. This condition of con-

stant power corresponds to the case of a wave-off or balked landing and

the power effects are much more destabilizing than for trimmed flight at

a constant airspeed. For example, at any constant value of thrust, the

decrease in stability due to propeller operation is only 25-percent of

the decrease observed with full power.

The effects of propeller operation on longitudinal stability can be

divided into four individual components which we can then study sepa-

rately. These four components are the pitching moment due to propeller

thrust, the pitching moment due to propeller normal force, the pitching

moment due to slipstream on the wing_ and that due to slipstream on the

horizontal tail. Special consideration will be given to the condition

of lO,OO0 horsepower per engine, since from the standpoint of longitudinal

stability and control it is more critical than the condition of constant

thrust. Some of the data shown in the subsequent figures are actual

experimental data but a large part of the data is calculated from the

measured power effects for the single airplane arrangement which was

investigated. The scale to which the pitching moments are plotted in

figures 5, 6, 7, and 8 has been expanded to show more clearly the indi-

vidual power effects.

The pitching moment contributed by the propeller thrust is shown

in figure 5- It is obvious that this moment contribution is proportional

to the vertical distance from the thrust axis to the airplane center of

gravity. This effect is shown for the three airplane arrangements noted

in the figure. Since at a llft coefficient of 1.6 the propellers are

producing over 50,000 pounds of thrust, this pitching moment increment

can become quite large and destabilizing if the thrust axis is very far

below the airplane center of gravity. The advantage of a high wing

design in this respect is obvious.

Ir

w

The pltching-moment contribution due to propeller normal force is

shown in figure 6. The magnitude of the propeller normal force is a

function of the size and shape of the propeller and the propeller loading

or thrust coefficient. Little control is possible over the magnitude of

the normal force but the moment it produces can be controlled by changing

the longitudinal distance from the propeller disks to the airplane center

of gravity as shown in the figure. For the original model, propeller

normal force was very destabilizing as indicated by the large positive



"•_l_'_e'of "ACm against CL. Moving the powerplants farther out along

the span as shown by the other two airplane arrangements reduces this

destabilizing moment to less than half its original value. Instead of

moving the powerplants outward, the same effect can be achieved by

moving the propellers closer to the wing leading edge.

w

The moment contribution due to propeller slipstream on the wing is

shown in figure 7 for the original powerplant arrangement and for two

alternate locations of the nacelles, khe high disk loadings associated

with the large power of the turboprop engine and the small diameter of

the supersonic propeller make for extremely high dynamic pressures in

the slipstream at low forward speeds. The incremental wing lift due to

slipstream is thus quite large and, if the center of pressure of this

lift increment is ahead of the center of gravity, a destabilizing

pitching moment will result. This was the case for the original con-

figuration with nacelles at 25 and 50 percent of the semispan. Moving

the powerplants farther from the plane of symmetry permits this desta-

bilizing moment to be reduced or made stabilizing as shown by the other

two airplane arrangements in the figure.

The fourth moment contribution to be considered is the effect of

the propeller slipstream on the flow at the horizontal tail. This

effect may be stabilizing or destabilizing depending on the location of

the tail with respect to the slipstream and the amount of lift being

carried by the tail. The effect of vertical height of the horizontal

tail for the model configuration under discussion is shown in figure 8.

It would be expected that this slipstream contribution would depend to

some extent on the mode of rotation of the propellers. Because the tests

were made on a reflection-plane model, the conditions simulated are the

same as if the airplane had right-hand propellers on the right wing and

left-hand propellers on the left wing. Attempts to calculate this tail

contribution and the effects of slipstream rotation on it have not been

too successful. If the powerplants are moved further out along the span

to reduce the destabilizing moments due to propeller normal force and

slipstream onthe wing, it may be that the slipstream will pass outboard
of the horizontal tail and thus have little effect on its contribution

to the airplane stability.

The effect of propeller operation on the longitudinal character-

istics of the model with the flaps deflected is shown in figure 9- The

flaps extended from %he fuselage to the inner side of the outboard

nacelle. As can be seen, the effects of propeller operation were

extremely large and destabilizing. Also note the large increment in

lift due to operation of the propeller. The largest single destabilizing

contribution due to the propeller with the flaps deflected is that due to

the slipstream on the wing and on the tail. Removing the portion of flap

between the inner nacelle and the fuselage, as shown in figure i0, and

adding a small-span flap outboard of the outer nacelle greatly reduces
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the instability. For this case, the reduction in stability resulting

from application of 10,O00 horsepower per engine is about the same as

for the original model with the flaps retracted. As was the case with

flaps retracted, moving the powerplants outu_ard will further reduce

the destabilizing effect of power and in the extreme case a stabilizing
effect can be obtained.

Reviewing the case of a four-e_ine, swept-wing tractor configu-

ration it appears that power effects on longitudinal stability can be

minimized by maintaining a hlgh wing design, placing the powerplants

fairly well out along the span, and keeping the propeller disk as close

to the wlng leading edge as propeller stress considerations will allow.

An area-lncreasing or high-lift-producing flap so immersed in the slip-

stream that the center of pressure of its llft is ahead of the center of

gravity should be avoided. A fairly small tail span in conjunction with

an outboard nacelle location can be used to advantage to minimize the

effect of the slipstream on the tail contribution to stability.

So far only the effects of power on the longitudinal characteristics

have been discussed. _he lateral disposition of nacelles indicated as

desirable from the standpoint of longitudinal stability and control will

make more critical the lateral and directional control following power

failure. Additional study of thls problem is required before the best

airplane arrangement can be selected.

In addition to the study of the multiengine airplane configuration

made at the Ames Laboratory, a similar investigation of a model of a

single-engine tractor airplane has been made at low speed in the Langley
300 MPH 7- by 10-foot tunnel. The wing had 40 ° of sweepback and an

aspect ratio of 3-5. A three-blade, single-rotation supersonic propeller

was used and the power simulated on the model corresponds to 7000 horse-

power on the airplane at sea level. The effects of power on the longi-

tudinal characteristics are shoe in figure ll. Note here that the com-

parison is for a condition of constant power with a condition of zero

propeller thrust instead of with the propeller removed as in the previous

figures. A large part of the propeller normal force is present at zero

thrust so that the stability change will be somewhat less than if the

propellers-off condition had been selected as a reference. As can be

seen from the data in figure ll, operation of the propeller decreased

the static margin but resulted in acceptable longitudinal stability

characteristics. The large increase in lift due to operation of the

propeller is noted in the figure.

This model was also tested with a horizontal tail mounted lower on

the vertical tail as indicated by the dotted line on the airplane side

view in figure ll. For this configuration, the model with the flaps

retracted became longitudinally unstable for either power condition or

with propeller off at a lift coefficient of about 0.80 and with the
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neutrally stable at a lift coefficient of

about 1.0. In general the power-on longitudinal stability was largely

dependent on the power-off characteristics of the model, l_ading-edge

chord extensions 3 slats, and wing fences which improved the power-off

characteristics showed comparable improvements with the propeller

operating.

%

The effects of operating propellers on the lateral and directional

characteristics of an airplane of this type with a single-rotation

propeller are particularly severe. This result is due primarily to the

large amount of power being absorbed and not to the fact that it is a

swept-wing airplane. For the subject modelj full aileron deflection
of ±18 ° and rudder deflection of -25 ° were not sufficient to balance

the airplane in the take-off condition with full power.

Both of these deficiencies were in large part a result of using a

single-rotation propeller. Because of the rotation in the slipstream,

flow separation at the higher angles of attack was accelerated on the

left wing behind the up-going propeller blade and was delayed on the

right wing behind the down-going blade. This effect resulted in a large

asymmetry of the separated flow and consequently a large rolling moment.

Differential deflection of the wing flaps was found to provide an

extremely powerful lateral control for the take-off condition and, in

conjunction with the ailerons, was capable of balancing the airplane

laterally at take-off up to angles of attack of about 15 ° . As the angle

of attack was increased above 15° with take-off power_ the roll-off

became violent and uncontrollable. Extension of partial-span leading-

edge slats increased the angle of attack at which lateral control could

be maintained to slightly over 19 ° .

The inability of the rudder to balance the airplane directionally

was largely a result of the flow angularity at the vertical tail brought

about by slipstream rotation. A small triangular retractable fin behind

the canopy, set at an angle of I0 ° to counteract the slipstream rotation_

was found to be extremely effective in reducing the sidewash at the

vertical tail. With the addition of this device and a moderate increase

of rudder area, the airplane could be balanced directionally at take-off

with sufficient excess rudder power to control the airplane in steady

sideslips.

In summary, it appears that high powered turbopropeller powerplants

can be mounted as tractor installations on swept-wing airplane without

severe aerodynamic compromises. Compared to a turbojet airplane, the

size of the vertical tail and rudder may have to be increased and the

lateral control provided by conventional ailerons may have to be augmented

in order to provide for control following power failure of a multiengine

design or to provide control at take-off for a single-engine design with

a single-rotation propeller. As a result of the theoretical work and the

Q
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wind tunnel investigations now being made by the NACA of propeller

powered models, methods of computing the propeller effects are being

studied and evaluated for power conditions representative of modern

turboprop engines. These investigations are being extended to high sub-

sonic Mach numbers and the airplane configurations under consideration

are capable of flight at these high Mach numbers. In studies made to

date, stability and control problems have been found to be greater only

in degree from those previously encountered on conventional propeller-

driven airplanes.

T
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SO_ FREE-FLIGHT 7._ASUREMENTS OF TURBULENT SKIN FRICTION

AND HEAT TRANSFER AT HIGH SUPERSONIC SPEEDS

By Alvin Seiff, Simon C. Sommer, and Barbara J. Short

Ames Aeronautical Laboratory

T

m_

Turbulent skin friction has always been of interest to aircraft

designers because of the large drag term which it represents. This

remains true at high supersonic speeds, particularly for thin wings and

slender bodies. However, there is another very important reason for

interest in turbulent skin friction at high supersonic speeds, namely,
the direct relation between skin-friction coefficient and heat-transfer

coefficient which was first proposed by Osbourne Reynolds.

For these reasons, a large amount of experimental work has been

done in recent years to define the variation of turbulent-sldn-friction

coefficient with Mach number. Some of the more recent data (refs. i, 2,

and 3), obtained by direct measurement of the skin-friction force, are

shown in figure l, where the ratio of skin-friction coefficient to the

corresponding incompressible value is plotted against Mach number in the

conventional manner. Several of the theories, including the original

estimate of Von K_rm_n, agree reasonably Well with the data but_ as

pointed out by Chapman, do not provide a sound basis for extending the

data precisely beyond a I._ch number of 4.5.

It should be emphasized that all these data were obtained at or near

zero heat transfer, a condition that is not apt to occur in free flight

at high supersonic speeds. The effect of large rates of heat transfer

on these results is, therefore, a question of great practical importance.

As the heat transfer is varied, a marked change in the boundary-layer

temperature and density profiles occurs. The variation in skin friction

-with Mach number at zero heat transfer is primarily due to variation in

the temperature and density profiles so it might well be expected that

the skin friction will also vary with heat transfer.

Some theoretical estimates have been made of this effect. Of the

theorists represented in the first figure, only Van Driest (ref. 4) has

estimated the effect of heat transfer. However, Monagban (ref. 5) has

extended Cope's theory to include heat transfer and Clemmow (ref. 6) has

applied the Von K_rn_nmixing length expression used by Wilson to the

heat-transfer case. Also, Von K_rm_'s original method of estimating

the Mach number effect (ref. 7), namely evaluating the density and vis-

cosity in the incompressible-skin-friction formula at the wall tempera-

ture, can be readily applied to estimate the effect of heat transfer as

can tD_t of Tucker (ref. 8) who used the mean of wall temperature and
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free-stream temperature for evaluating density and viscosity. Figure 2

shows these five estimates of the effect of heat transfer on skin friction

at Mach numbers of 3.9 and 7.25. The ra_io of skln-friction coefficient

to the corresponding incompressible coefficient is plotted against the

difference between recovery temperature Tr and wall temperature Tw

divided by the temperature at the edge of the boundary layer TI_ a

parameter which is proportional to the heat-transfer rate.

There are several interesting things about these curves. First, all

of the theories predict that the skin friction increases with increasing

heat-transfer rate. But_ they disagree as to how much, the rises ranging

from just over 20 percent to more than i00 percent. Also, three of these

estimates show_ for the heat-transfer condition corresponding to equal

wall temperature and free-stream temperature, no reduction in skin-friction

coefficient with increasing Mach number.

The experiments which are the subject of this paper were conducted

then for two reasons: to measure the turbulent skin friction under a

condition of large heat transfer and to extend the Mach number range for

which skln-friction data are available. The data were obtained in free

flight using gun-launched_ spin-stabilized models of the type shown in

figure 3. The models were thin-walled tubes, flown with their axes

parallel to the stream_ with diameters of about 1½ inches and wall thick-

nesses of 0.03 inch. The leading edges were symmetrically beveled with

a half-angle of I0 °. Figure 4 is a shadowgraph picture of a test model

in free flight at a Mach number of 3.9. The shock patterns associated

with the inside and outside flows can be seen, as well as the annular

wake and the _ch waves produced by the turbulent boundary layer.

Tests were conducted at a Mach number of 3.9 by firing through still

air at I atmosphere pressure and at a Mach number of 7.25 by firing

upstream through a Mach number 2 air stream. The surface temperature

rise during flight was estimated theoretically, assuming conservatively

that the heat transfer occurred at the maximum initial rate. Temperature

gradients within the model were accounted for. It was found that the

temperature rise in the i/lO0-second duration of the flight was 35 ° F.

Thus, the wall-to-free-stream-temperature ratios were found to be 1.06

and 1.82 for the tests at M = 3.9 and 7.25, respectively. The calcu-

lated turbulent recovery temperatures at the two Mach numbers were 2000 ° R

and 4000 ° R, indicating the large rates of heat transfer which occurred.

The test procedure was as follows. A test model and a tare model

were fired under the same test conditions and their dra_ coefficients

were computed from deceleration data. The difference in drag is_ except

for small correction terms, a measure of the skin friction of the aft

part of the test model. Thus the tare model takes care of some of the
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drag terms which are not susceptible to accurate calculation, including

the drag of the boundary-layer trip, that of the laminar flow over the

wedge and trip, and the base drag. Corrections were applied for the

differences in base drag (using the data obtained by Chapman) and for

the small differences in model geometry that inevitably occur. In this

connection, an interesting point is that the leadlng-edge thickness,

although always less than 0.001 inch, had to be measured very carefully,

since differences of 0.0001 inch caused appreciable scatter at M = 7.25.

The matter of the boundary-layer trip was treated with great care

in an effort to avoid artificial thickening of the turbulent boundary

layer at the trip. Trip strength was varied until the least disturbance

which caused turbulence to occur on or near the trailing edge of the

roughened region was found. Transition was then assumed to occur at the

trailing edge of the trip and the turbulent origin was estimated from

theoretical considerations of the relative rates of growth of laminar

and turbulent boundary layers. These considerations were then applied

to the determination of the Reynolds number limits required in computing

the incompressible skin friction. The F_n-Schoenherr equation was

used throughout in computing the incompressible friction.

The results of these experiments are shown in figure 5. The test

point at M = 3.9 was obtained at a Reynolds number of 5 x l06 and is

the mean of 12 results which had a root-mean-square deviation of 1.3 per-

cent from the mean. At M = 7-25, tests were conducted at a Reynolds

number of 5 X lO 6, and the mean of 12 results obtained is the upper of

two test points shown. Because of the reduced ratio of skin friction to

total drag, a large scatter occurred, with values of the friction drag

ranging from 0.3 to 0.4 of the total drag. Therefore, as a check, addi-

tional tests at a Reynolds number of 7-5 X 10 6 were run, and the mean of

the six results then obtained agreed closer than was expected with the

point at a Reynolds number of 5 X 10 6, as shown by the two test points

in the figure.

At M = 3.9, the present data lie 37 percent above the no-heat-

transfer data. When plotted against heat-transfer rate as in figure 6,

the data do not agree consistently with any of the theories. In-addltion

to the test points shown for M = 3.9, an additional value of Cf/Cfi

at an intermediate heat-transfer condition can be obtained from the data

of figure 5 by interpolation, since the curve for Tw_ 1 = 1.8 must

cross the zero-heat-transfer curve at M = 2.1. The interpolated value

at M = 3.9 was used to define the shape of the dashed experimental

curve which turns out to be qualitatively similar to that predicted by
some of the theories.

at



0@e@@• Q@•• •@
4 ."" ." : ." " ."

•..... • . .....

@@

.. : : :CeNfD_TDJ_
• • 06 • •

• O@ @@O@@ ,,l o• ° .@@@ •,_

Turning now to the question of turbulent heat transfer, it is well

to start with some mention of Reynolds analogy, which has been the most

powerful theoretical tool available in this field. This analogy states

that the heat-transfer coefficient, when nondimensionalizedwith respect

to the heat capacity, density, and velocity of the stream to form the

Stanton number, is equal to one-half the skin-friction coefficient.

Recent theoretical work by Rubesin (ref. 9) and others suggests that the

ratio of Stanton number to skin-friction coefficient may be closer to 0.6

than one-half, but that this ratio is relatively unaffected by Mach num-

ber and Reynolds number. Within the limits of accuracy of this theory,

the experimental skin-friction curves of figure 5 also represent the

rate of fall of heat-transfer coefficient with increasing Mach number.

But, it is very important to compare this prediction with experimental

data. In the remainder of this paper, some free-flight experiments

dealing with this question will be described, after which a collection

of the available data will be shown.

In the aforementioned experiments, slender, fin-stabilized bodies

of revolution of fineness ratio 30 were gun launched tb_ough still air

at 1 atmosphere pressure at a Mach number of 3.2. The approximate

temperature conditions of the flight were as follows: wall temperature,

540 ° R; turbulent recovery temperature, 1500 ° R; and Tw/T 1 = 1.02. The

boundary layers were tripped by sand blasting the model tips and a flash

interferometer picture was taken of the model in flight. One of the

pictures obtained is shown as figure 7. The fringe shift in the boundary

layer was about 0.6 of the fringe space and was carefully read by dif-

ferent observers with an accuracy of about 0.03 fringe. Refraction

errors which plague two-dimensional boundary-layer interferometry were

carefully calculated and found to be negligible because of the short

path length in the disturbed flow. It was found that adjacent fringes

did not give identical fringe shift data, but that the differences

between fringes could be repeated within the scatter of measurement by

different observers. These differences from fringe to fringe are believed

due to spatial variations in the density distribution of the turbulent

boundary layer. The fringe data were reduced to density distribution

assuming axial symmetry, and the density data were converted to tempera-

ture data assuming uniform static pressure in the boundary layer. The

data so obtained are shown at the left in figure 8. The large scatter

is partly due to real differences between the fringes and partly due to

errors in reading the fringes. The filled-in points were reduced from

fringe measurements of a second observer and can be used as a measure of

the scatter due to reading. The mean of the experimental data is plotted

at the right and compared with the theory of Van Driest and with the

Crocco equation relating temperature profile to velocity profile as

applied to a 1/9th power velocity profile. An interesting feature of

these profiles is that the cold wall holds the air temperature ratio

below 1.4 whereas the recovery temperature ratio is 2.8. The recovery
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temperature is not a good index of the maximum air temperature in the

presence of a cold wall.

Very near the wall, the temperature ratio drops sharply to the wall

value, 1.02. A suggestion of this reversal appears in the interferograms,

but it is not detailed enough to permit measurements. The extent along

y of this sharp temperature rise can be estimated from the heat-transfer

coefficient, which gives the slope of the temperature profile at the wall

as 1.2 × 106 OF/inch, at which rate the temperature would rise from the

wall value to meet the curve at y/a = 0.002.

The temperature profile data can be used to estimate the average-

heat-transfer coefficient by means of an energy-balance calculation

analogous to the momentum-loss method of measuring skin friction. In

this calculation, the kinetic energy lost by the model through the action

of the skin-friction force is examined. Part of this energy appears as

increased thermal and kinetic energy of the boundary-layer air, and the

remainder appears as heat in the body. In evaluating the increased

energy of the boundary layer, a velocity profile is required. To this

1/n
end, it was assumed that a law of the form u/u I = (y/6) would hold
and n was evaluated from the skin-friction and density-profile data in

a momentum-loss integral. Values of n of 8.2 and 8.4 were calculated.

Thus, it was possible to compute all of the energy terms and obtain the

rate of heat input to the body. The results of this calculation are

shown in figure 9, where the variation of Stanton number with Mach num-

ber is plotted. The experimental skin-frlction curves presented earlier

are replotted here and compared with collected heat-transfer data. The

present data are represented by the two diamond points at a Mach number

of 3.2 and should, if Reynolds analogy helds, compare with the upper

curve. The wind-tunnel data of Pappas and Rubesin (ref. lO) and that of

Fallis (ref. ll), being obtained near zero heat transfer, should compare

with the lower curve. The measurements of Fischer and Norris (ref. 12)

were made in free flight on the nose cone of a V-2 rocket. The tempera-

ture ratios were between 1.2 and 1.4 so the data should fall between the

curves but closer to the upper one. The same is true of the data of

Chauvin and deMoraes, obtained from free-flight tests of an NACA RM-IO.

(See ref. 13.) The data of Monaghan and Cooke (ref. 14) were obtained

under hot-wall conditions, with the vall temperature well above the

boundary-layer recovery temperature. They would therefore be expected
to fall below the zero-heat-transfer curve. Within the limited framework

of available data, it appears that there is a correlation between skin-

friction and heat-transfer coefficients, both following the same trends

with changing wall temperature.

It should be pointed out that the data shown here were modified

from those originally given in three cases, namely, the experiments pre-

sented in references ii, 12, and 13. The principal modification was the
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measurement of Reynolds number from the turbulent origin rather than the

leading edge or nose. Determination of the transition point is one of

the most uncertain factors in some of the experiments. An additional

modification was required in the case of the V-2 experiments to correct

the data from cone to flat plate using the theoretical correction of
Van Driest.

In summary, theory and the present experiments indicate that a

significant increase in turbulent-skin-friction coefficient occurs as

the heat transfer is increased from zero toward values which may occur
in free flight. Furthermore, the limited data now available indicate

the correctness of Reynolds analogy as a means of estimating turbulent
heat transfer.
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FACTORS AFFECTING TRANSITION AT SUPERSONIC SPEEDS

By K. R. Czarnecki and Archibald R. Sinclair

Langley Aeronautical laboratory

IF

With the advent of flight at supersonic speeds there has been renewal

of interest in the subject of boundary-layer transition. Whereas experi-
ence has shown that extensive runs of laminar flow cannot be obtained under

practical field operating conditions at subsonic speeds, both theory and

practical considerations indicate a more favorable outlook at supersonic

speeds. For example, it has been demonstrated that longer runs of laminar

flow can be obtained by cooling the boundary layer and that the cooling

can be obtained by taking advantage of the natural heat capacity of a

missile, at least in the initial phases of the flight. Also, since the

missile is intended to make but a single flight, the construction and

maintenance of a smooth surface is simplified. Further, such large reduc-

tions in drag and aerodynamic-heating rate are possible with laminar flow

that reexamination of the problem of transition is imperative. This paper

surveys the available material to summarize what is known to date about

boundary-layer transition at supersonic speeds.

The bulk of our current information on supersonic transition comes

from wind tunnels. As in subsonic tunnels, the transition results obtained

are critically dependent on the quality of the airstream. It is necessary,

therefore, in any analysis of tunnel transition data to first ascertain

whether the results are unduly affected by wind-tunnel disturbances.

Indications have been found that supersonic transition data are affected

by local shocks and angularity of the tunnel airstream as well as by

turbulence level. Because it is difficult to evaluate the quality of

supersonic tunnel flows by direct measurement of these factors, the NACA

is conducting comparative transition tests with zero heat transfer on a

particular body shape, a I0° cone, in many of its supersonic facilities.

In figure i are shown some of the results obtained to date. The Reynolds

number of transition Rt based on distance from the nose, is plotted

against M and also against R per foot. Both abscissas are used here

simply to define the test conditions and not to indicate that they are

significant parameters affecting transition.

This figure is presented only to show the wide range of transition

Reynolds numbers obtained in different tunnels under comparable test

conditions and hence the wide variation in the quality of the airstreams

in these wind tunnels. Some of the facilities have sufficiently small

disturbances to permit extensive laminar flows, for example, the Langley
9-inch and A-foot supersonic tunnels.
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In the remainder of this paper the bulk of the tunnel data used are

from these two tunnels having the high transition Reynolds numbers. In

addition, transition data from model flight tests in still air at the

U.S. Naval Ordnance Laboratory and at the Ames Aeronautical Laboratory
are used.

The effect of Mach number on transition on smooth bodies at super-

sonic speeds is considered in figure 2. The data presented at the lower

Mach numbers, M = 5 or less, are for zero or essentially zero heat trans-

fer. The data at the higher Mach numbers include some boundary-layer

cooling. The point at M = 0 is the transition Reynolds number for a

flat plate at low speeds for a wind-tunnel turbulence level of less than

0.i percent (ref. i). For the lower Math number tests, R t generally

corresponds to transition at the model base, hence there are no changes

in pressure gradient to be considered. The arrow at M = 5.8 (data

from ref. 2)_ incidentally, indicates that the exact value of Rt is

not known but is greater than the value plotted.

In general, the results in figure 2 for M less than 5 indicate a

decrease in R t with increasing Mach number except for the cone-cylinder

when M is less than 2. It may be remarked here that the rate of decrease

in transition Reynolds number with increase in Mach number may be affected

somewhat by changes in tunnel-flow characteristics that occur with changes

in test section Mach number. From these data one might expect to obtain

very little laminar flow at higher Mach numbers and this was the picture

until recently. Recent hypersonic wind-tunnel results_ however, show the

relatively high values of R t indicated by the points for M _ 6 and 7-

These relatively high values of R t are believed to be due partly to

favorable heat-transfer effects which may usually be expected at hypersonic

speeds and partly to favorable shock_boundary-layer interactions at the

nose of the models which result in a favorable local pressure gradient

(ref. 3). The important conclusion that can be drawn is that values of

R t of the same order of magnitude as those obtained at low supersonic

speeds can be obtained in practical cases at hypersonic speeds.

Figure 3 shows the effect of surface pressure gradient on smooth

bodies at a Mach number of 1.61. The sketches in the upper part of the

figure indicate the types of bodies tested and their pressure distribu-

tions. The curves in the lower part of the figure are a plot of the

measured skin friction based on wetted-surface area. At the point where

the experimental skin-friction curve leaves the theoretical laminar curve,

transition has appeared at the base of the body and is beginning to move

forward.
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The results indicate that the parabolic body with a moderately favor-

able pressure gradient over the length of the body had the largest value

of Rt, about ll × lO6 . The cone-cylinder with the least amount of favor-

able pressure gradient showed the lowest value, about 2.7_ × lO 6. From

these results, it is apparent that pressure gradient has a strong effect

on transition at the lower supersonic Mach numbers just as at subsonic

speeds. In order to obtain high values of Rt, it is apparently desirable

to maintain a favorable pressure gradient where the boundary layer is

most susceptible to instability - in these tests a favorable pressure

gradient toward the rear of the body. Regions to the left of the curves

indicate either a theoretically stable or experimentally laminar boundary

layer. At higher test Reynolds numbers, when transition has moved forward

on the bodies, both the •give-cylinder and cone-cylinder show larger runs

of laminar flow than the parabolic body because of the more favorable

pressure gradients on the •give or at the cone shoulder.

Some additional results showing the effects of pressure gradient

are presented in figure 4. In this case the pressure gradient was altered

by changing the shape of the body progressively from that shown at the

upper left to that at the upper right. The transition results are plotted

against the ratio of base area to maximum cross-sectional area, which is

a rough i_dex of the increase in length of favorable pressure gradient.

It may be noted that increasing the run of favorable pressure gradient

resulted in a reduction in the rate of falling pressure. Transition in

these tests always occurred at the base.

The results indicate a large increase in _ with increase in length

of favorable pressure gradient at both Mach numbers investigated. The

reverse in the curves at the lowest area ratio is due to laminar separa-

tion at the model base. The__reason for the discontinuity in the Mach

number 1.93 curve near Abas_Amax = 0.7 is not known.

An analysis of the data from which the curves of figures 3 and 4

were obtained and of other results available at supersonic speeds shows

a tendency for the favorable effects of a falling pressure to decrease

as the boundary layer becomes thin as near the nose of a body or at very

high test Reynolds ntunbers. In addition, theoretical calculations by
Lees (ref. 4) and by Well (ref. _) predict a decrease in the effects of

pressure gradient as M is increased; although, as yet, there is no

reliable experimental verification.

The possibility of a large stabilizing effect due to cooling of the

laminar boundary layer at supersonic speeds in the case of the Tollmien-

Schlichting type of boundary-layer instability was predicted theoretically

in the well-known work of Lees in 19_7 (ref. 6). Recent studies, partic-

ularly those in the Langley 4- by 4-foot supersonic pressure tunnel
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(refs. 7 and 8) and in flight (ref. 9)_ have confirmed the existence of

this effect. In figure 5, the chart on the right compares the theoretical

effect of heat transfer on the stability of the boundary layer on a flat

plate (ref. 10) with the experimental effect of heat transfer on transi-

tion on the RM-IO parabolic body. The parameter R t is plotted against

, the ratio of wall temperature to free-stream temperature. At a

value of this ratio of 1.05 theory indicates that the boundary layer will

be stable for all Reynolds numbers. The trends of the curves are in good

agreement. A part of the displacement between curves occurs because of

the comparison between two- and three-dimensional bodies, a part because

of the additional length of surface required for the disturbance in the

boundary layer to amplify sufficiently to break down the laminar flow,

and another part because of the favorable pressure gradient on the body. ,

The highest value of R t obtained in the tunnel tests was about 28.5 x 106

(ref. 8). The highest value of R t measured to date with cooling is

about 90 x 106 and was obtained at White Sands Proving Ground in flight

on the conical nose of a V-2 rocket (ref. 9). Thus, if transition can

be limited to the apparently Tollmien-Schlichting type, boundary-layer

cooling will be of great aid in obtaining long runs of laminar flow.

In the chart on the left the experimental results for the parabolic

body have been replotted against AT/Tstag , an index of the amount of

heating or cooling relative to the stagnation temperature. In addition

are shown some results typical of the earlier experiments in other wind

tunnels in which low adiabatic transition Reynolds numbers were obtained.

An analysis of the results shows that when the transition Reynolds

number for zero heat transfer is low, the effects of heat transfer are

small, and, when R t for the adiabatic case is high, the effects of heat

transfer are large. The low effectiveness of heat transfer on transition

in the earlier tests is usually derived from the fact that transition

is generally influenced by surface roughness, boundary-layer separation

due to adverse pressure gradients, or tunnel effects. These types of

transition do not appear to be strongly influenced by heat transfer.

Because of its importance, the next type of transition to be studied

is that due to surface roughness. In figure 6 is presented a plot of

RTRtk=O , the ratio of Reynolds number of transition with single-element

surface roughness to Reynolds number of transition for a smooth body,

against the parameter k/5*k, the ratio of roughness height to boundary-

layer displacement thickness at the roughness. The solid line is the

low-speed correlation obtained by Dryden (ref. i) on the basis of transi-

tion data for Reynolds numbers less than 2 X 106 . For this case, the
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results show that for a roughness-height ratio of less than 0.1 single-

element surface roughness has no effect on transition. Results for bodies

having values of R t greater than 2 X l06 do not extend to sufficiently
/

low values of k_* k to establish the validity of this conclusion for

cases with longer runs of ]mmlnar flow.

0nly one approximate point is available for plotting for the super-

sonic speeds. This point indicates a somewhat higher value of roughness

ratio required to effect transition than in the subsonic case, but the

point may be within the range of scatter obtained in the subsonic correla-

tion. A somewhat larger amount of data is available for comparison with

subsonic results if the Reynolds number for transition itself is plotted

against roughness ratio as is indicated by the chart on the left in fig-

ure 7- The three data points for the parabolic body at M = 1.61 appear

to fall within the same range as the low-speed airfoil data for similar

single-element roughness. The steep rise in Rt as the roughness ratio

is reduced in the supersonic case compares closely to the trends obtained

at high Reynolds numbers of transition subsonically.

In the chart on the right is presented a plot of Rt against the

parameter k for distributed surface roughness on an ogive-cylinder

u .R=IO 6

body. When the roughness is distributed over an area it is not clear

what value of boundary-layer thickness should be used as an index of the

roughness effect; hence, an arbitrary value of boundary-layer thickness,
5 for R = lO u, was chosen for this chart. The tests were made with

a wall-to-free-stream temperature ratio of about 1.O4, thus indicating

that the tests were within the region for infinite Tollmlen-Schlichting

boundary-layer stability for a flat plate. The results show trends sim-

ilar to those determined for single-element roughness. Other preliminary

data indicate that, for equivalent roughness heights, transition will occur

at lower Reynolds numbers for distributed roughness than for single-element

roughness when the leading edges of the roughnesses are at the same location.

An investigation of effects of heat transfer on transition due to

roughness was made on the parabolic body at M = 1.61 (refs. 7 and 8)

but few of the data were susceptible to the present type of analysis.

A study of the trends, however, shows that the effect of heat transfer

on the critical roughness parameter may be small. In particular, how-

ever, the results showed that whenever transition was significantly

affected by surface roughness or, for that matter, by any other type of

finite disturbance, then boundary-layer cooling was ineffective in

extending the length of the laminar run.

If the results that have been presented on surface roughness are

interpreted to mean that the Mach number effects on the correlations
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are small, then for constant Reynolds number the allowable roughness

height before transition is effected should increase with Mach number

because of the growth of boundary-layer thickness with Mach number.

At M = 5 the allowable roughness should be increased by 2.5 and at

M = i0 by a factor of 6 (fig. 8, left plot).

t

In addition, as the altitude is increased or the pressure decreased,

the molecular mean free path becomes relatively large compared to the

protuberance height and continuum flow will not exist and the effects of

surface roughness may conceivably disappear. Calculations indicate that

for all cases where surface roughness effects could be detected the rough-

ness was considerably greater than I00 times the length of the molecular

mean free path (fig. 8, right plot). The calculations also show that,

even on the basis of this criterion, the allowable surface roughness will

be greater than 200 microinches at i00,000 feet and 7000 microinches, or

0.007 inch 3 at 200,000 feet altitude. The shaded area in figure 8 indi-

cates the usual range of maximum surface roughness encountered on wind-

tunnel and flight-test models.

Up to now all data that have been presented have been for bodies

only and for zero angle of attack. Airplanes and missiles, however,

usually have wings and fly at some angle of attack. There are insuf-

ficient data on wing transition to present any type of correlation; hence,

this phase will not be discussed. Figure 9j however, has been prepared

to show the effect of _ on R t for two bodies, each at a different

Mach number. The tests of the parabolic body were made in a wind tunnel

without heat transfer and transition was obtained from force tests and

boundary-layer surveys. The results thus correspond to transition at the

base of the body. The tests of the slender ogive-cylinder were made in

the Ames free-flight tunnel and include a large amount of cooling. In

this case transition was obtained by means of shadowgraph studies and

is shown for the upper surface only since this is the more critical

surface. The latter tests were also limited to a Reynolds number of

ii x 106 .

Both sets of data, which include differences in Mach number and

heat-transfer conditions, indicate similar trends: a decrease in R t

as _ is increased. For the parabolic body, a change in _ from 0°

to 2° reduces R t by 60 percent. Both curves are not too well defined

for _ less than i°, but the trends appear to indicate that transition

will be sensitive to _ even at very low angles.

In conclusion, first, boundary-layer transition should be of the

Tollmien-Schlichting type if favorable effects of pressure gradient and

heat transfer are to be realized. Maximum transition Reynolds numbers
of about 28 × 106 in wind-tunnel tests of a parabolic body and 90 x 106

T
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in flight tests of a cone have been obtained with boundary-layer cooling.

The effects of surface roughness at supersonic speeds appear similar to

those at subsonic speeds, and the allowable-roughness-helght parameters

are of about the same magnitude as at subsonic speeds. Hence, to avoid

transition due to roughness, the roughness size should be limited to

about 1/lO the boundary-layer displacement thickness. Finally, for the

longest possible runs of laminar flow, the body should be closely alined
with the flow.
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CCMMENTS P}_TAINING TO THE PREDICTION OF SHOCK-INDUCED

BOUNDARY-LAYER SEPARATION

By Roy H. Lange

Langley Aeronautical Laboratory

INTRODUCTORY R_4ARKS

One of the fundamental problems that appears in the investigation

of supersonic flow over a surface is that of the phenomena associated

with the interaction of shock waves and boundary layers. The problem

of _hether a given shock wave will cause boundary layer separation is

one which occurs in all cases where a pressure increase is to be obtained

as a result of the retardation of the flow. Such problems occur, for

example, in the flow in supersonic diffusers and air inlets and in the

flow at the rear of airfoils and bodies. Shock-induced boundary-layer

separation generally results in poor aerodynamic efficiency in the for-

mer case and in undesirable airfoil characteristics in the latter case

and, therefore, this problem is of considerable practical significance.

The purpose of this paper is to discuss the status of information rela-

tive to the prediction of shock-induced boundary-layer separation. In

order to study the fundamental features of the problem, the discussion

is concerned principally with data obtained on flat plates in two-
dimensional flow.

Prandtl has discussed separation of the incompressible boundary

layer under the influence of a positive pressure gradient (refs. 1

and 2). The approximate methods such as those of Von I_rm_n, Pohlhausen,

and Buri for predicting separation were derived on the assumption that

the boundary layer has time to adjust itself to a prescribed pressure

distribution. The Von Y_rm_n-Polhausen approximation for a laminar

boundary layer is:

dx -1
--= Kl%
ql

(1)

and Buri's approximation for a turbulent boundary layer is:

8 -!A

ql
(2)



@@ O@ @@ @@@ @@

where

8 boundary-layer thickness

d__p
dx

streamwise pressure gradient

% free-stream dynamic pressure

Kl_K 2 empirical constants

Reynolds number based on distance 8

Experience with the use of these approximations has shown that the occur-

rence of separation depends chiefly upon the pressure gradient dp/dx,

and that the turbulent boundary layer can withstand a much greater pres-

sure increase before separation than can a laminar boundary layer. When

the influence of a shock wave on a boundary layer is considered, it is

evident that, if the infinite free-streampressure gradient which the

shock wave represents could extend all the way to the wall, then separa-

tion would certainly result; however, as shown in the sketch of figure l,

it is known that the pressure difference across the shock is spread out

in the lower levels of the boundary layer. (See refs. 3 to 7.) The work

of Liepmann and Ackeret has shown that the amount of spread of the pres-

sure rise at the wall depends upon the state of the boundary layer, that

is_ whether the boundary layer is laminar or turbulent (refs. 3 and 6).

Thus, the pressure gradient appearing at the wall boundary is fixed by

the physical properties of the boundary layer and by the strength of the

shock wave. It seems logical to assume, then, that the occurrence of

separation in this case depends pri_cipally upon the pressure rise P2 - Pl

through the shock wave. It was further anticipated that as the pressure

rise across the shock was decreased there would be one shock strength

below which no separation of the boundary layer would occur. This con-

cept was advanced by Beastall and Eggink (ref. 8) and, later, a simpli-

fied dimensional analysis presented in reference 9 indicated that the

critical pressure rise across the shock Zkp/q1 which just causes separa-

tion of the boundary layer should be proportional to the local skin-

friction coefficient, cf. These approximations are extended to the

case for flat plates in terms of the Reynolds number based on x. Thus,

for a laminar boundary layer,

-- cf (3)
%
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and for a turbulent boundary layer

ql Rx (4)

It should be emphasized that the relationships given in equations (i) to (4)

are only approximations. For incompressible flow more refined methods have

been developed (refs. l0 to 13); however, the applications of these methods

for predicting separation have met with only limited success. A collec-

tion of the available data for supersonic flow (ref. 9) appeared to bear

out the predictions shown by equations (3) and (4) at the time they were

first derived; however, since that time, more experimental data have come

to light, especially for the turbulent boundary layer, which show that

the problem must be reexamined. The discussion of these data forms the

subject of this paper which now follows for both laminar and turbulent

boundary layers.

4"

o

LAMINAR BOUNDARY LAY_

The available data for shock-induced separation for laminar boundary

layers on flat plates are given in figure 2, where the critical pressure

rise 2_ across the shock divided by the free-stream dynamic pressure ql

is plotted against Reynolds number on logarithmic scales. The Reynolds

number is based on the distance from the leading edge of the plate to

the point of intersection of the shock wave and the boundary layer. The

sources of these data are given at the top of the figure. (See refs. 3,
6, 8, 14, 15, and 16.) It can be seen that the available data are rather

limited in scope and, therefore, are not conclusive; however, there are

some trends in the data which should be mentioned. For example, at free-

stream Mach numbers MI of 1.93, 2.00, 2.05, and 2.48 the Reynolds num-

ber effect on the critical pressure coefficient appears to follow the

inverse square root of the Reynolds number as denoted by the dashed lines

on the figure. Except for the data at Mach numbers of 1.40 and 1.44, the

critical pressure coefficient also decreases with increasing Math number.

These trends of Reynolds number and Mach number agree with the predic-

tions of equation (3); however, the magnitude of the Mach number effect

shown, especially between Mach numbers of 1 and 2, is much greater than

that which would be predicted by reference 9- Recent data obtained at

the Ames Laboratory in the separated region ahead of a forward-facing

step show an increase in Zkp/ql with increase in Reynolds number; thus

the configuration appears to have a large effect on laminar separation.

Stewartson (ref. 17) has made a detailed analysis of the interaction
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process which leads to the inference that the dimensionless pressure rise

required to produce laminar separation would be proportional to Rx-2/5.

Also shown in figure 2 is a curve which traces the criterion of separa-

tion advanced by Pabst (ref. 18) in a recent Argentine paper; however,

this criterion cannot account for the Mach number effect and does not

correlate with any of the experimental data shown.

o

TURBULENT BOUNDARY LAYER

Investigations of shock--boundary-layer interaction for the turbu-

lent boundary layer have shown that a given shock wave may or may not

separate the boundary layer.. Data are now available from a nun_er of

sources in which turbulent boundary-layer separation has been investi-

gated by three methods: (1) the forward-facing-step technique, (2) the

wedge technique, and (3) the incident-shock technique.

In order to remove all doubt as to whether the turbulent boundary

layer has been separated, several investigators have forced separation

by means of a forward-facing step mounted on a flat plate (see refs. 8,

9, 19, and 20). Typical data for this type of configuration are given

in figure 3 which shows the pressure distribution along the surface and

(to the same scale) a sketch of the flow field in the interaction region

as determined from shadowgraphs. These data were obtained in a blowdown

jet of the Langley gas dynamics laboratory at a Mach number of 3.03. The

flow diagram at the top of the figure shows that a wedge-shaped separa-

tion region is formed ahead of the step and is bounded on its upstream

edge by the shock wave. The direction of the circulatory flow within

the separated region is shown by the _rrows.

The pressure coefficients on the plate first reach a maximum value,

noted herein as the first peak, at a point about halfway between the

location of the shock wave and the location of the step. This distance

is roughly the equivalent of 8 boundary-layer thicknesses or 133 momentum

thicknesses, on the assumption of a 1/7-power velocity distribution in

the boundary layer just ahead of the shock. The pressures then dip

slightly behind the first peak and subsequently rise sharply, showing

the large influence of the circulatory flow. Also pertinent to the dis-

cussion of the flow in the separated region are the pressure coefficients

measured along the front vertical face of the step given in figure 4.

The three isolated points at a Reynolds number of 4 × l06 were obtained

at M 1 = 1.86 (ref. 21), and the data for Reynolds numbers ranging from

12 × l06 to 32 × l06 were obtained at M 1 = 3.03. The pressure orifices

were located at the base of the step and at two other vertical locations
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above the surface of the plate as denoted by z/h. The data at M I = 3.03

show no significant Reynolds number effect on the pressure coefficients.

The results show that there is one stagnation point at the foot of the

step and one near the top of the step, and calculations based on the data

at M1 = 3-03 and utilizing the incompressible Bernoulli equation show

that the velocity downward along the vertical face is about 1/4 the free-

stream velocity; whereas the velocity along the plate in a direction

opposite to the main flow is about 1/3 the free-stream velocity. Thus

the separated region cannot be treated as a dead-air space as is commonly
assumed. The results at both Mach numbers also show that a considerable

error would result if the pressures on the front face of the step were

assumed to be the same as that obtained on the plate surface ahead of

the step in the separated region. The first peak pressure coefficients

obtained ahead of the step are shown by the dashed lines at both Mach

numbers for comparative purposes in this case. This result may be

changed when the step height is very large compared to 8. It is clear

then, from the results given in figures 3 and 4_ that the first peak

pressure coefficient is obtained as a result of the mutual effects of

the shock on the boundary layer and of the circulatory flow in the sepa-

rated region and should __n°tbe interpreted as the value of the pressure

rise across the minimum strength of shock wave which just causes separa-
tion of the boundary layer.

A summary of the available data obtained from the use of the step

technique for forcing boundary-layer separation is given in figure 5

which shows f_P/ql taken at the first peak plotted against Reynolds num-

ber on a logari_c scale. The Reynolds number is based on the distance

from the leading edge of the plate to the point of intersection of the shock

wave with the boundary layer. All the data were obtained from pressure

distributions (see refs. 8, 14, 20, 22, and 23), and the sources are

given at the top of the figure. The Mach number range of the data is

from 1.55 shown by the long string of points at the top of the data to

3.65 shown by the lowest data points. The pressure distribution data

at M1 = 3.03 given by the circles are new data which have not been

published. The data given in reference 9 (TN 2770) for M1 = 3.03

represented by the dashed line which varies as Rx-1/5 were obtained

by measuring shock angles close to the point of intersection of the

shock wave and the boundary layer, where, as shown previously, the pres-

sures on the plate are changing rapidly; therefore this method for

obtaining pressure coefficients is too crude and the data should be

ignored. It is apparent from the mass of data that, except for the

data at Mach numbers of 1.86 and 2.48, the Reynolds number effect on

the value of _ is very slight. On the basis that there is

ist peak

o
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no Reynolds number effect, figure 6 has been prepared to show the decrease
J_

in _ with increase in free-streamMach number for Mach num-

ist peak

bers between 1.55 and 3.65. All the data from the previous figure have

been included in this plot, and the vertical lines connecting some of

the symbols show the extent of the Reynolds number effect obtained.

Included on this plot is the empirical relationship derived by Beastall

and Eggink from a curve which best fit their data for both forward-

facing steps and backward-facing steps (refs. 8 and 24). This approxi-

mation is independent of both Reynolds nttmber and Mach number and_ there-

fore, does not correlate well with the available experimental data for

forward-facing steps.

o

%

The second technique for producing turbulent boundary-layer separa-

tion is the use of wedges of different angles mounted on flat plates,

and a limited amount of data is available. (See refs. 20 and 25.) This

configuration is analogous to the deflection of a flap or a control sur-

face. Typical data obtained at a Mach number of 3.03 are given in fig-

ure 7 which shows the pressure distribution along the plate and on the

wedge and above it a sketch of the flow phenomena as determined by shadow-

graphs. A double scale is given along the abscissa of the pressure dis-

tribution - one which gives x in inches measured from the leading edge

of the wedge and one which gives a measure of the boundary-layer thick-

ness, x/5. As shown in the flow picture, the separation in the corner

produced by this particular wedge angle results in a weak shock wave,

which projects ahead of the main shock, and an inflection point is obtained

in the pressure distribution on the surface. Downstream of this point

the pressure coefficient continues to rise and levels off at a value

somewhat less than that calculated from oblique-shock theory for this

wedge angle in the absence of a boundary layer. In general, the limited

available data at a given Mach number show that, for wedge angles greater

than a certain value, the pressure distribution has an inflection point

similar to that show_ in figure 7; moreover, the value of Zkp/qI meas-

ured at the inflection point remains almost constant with further increases

in wedge angle. The data at M I = 3.03 also show that the value of Zkp/ql

obtained at the inflection point is essentially constant for Reynolds num-

bers ranging from 12 x 106 to 32 X 106 . Results are available from tests

utilizing the third technique in which shock waves of varying strength

are made to impinge upon the boundary layer on a flat plate. (See

refs. 16 and 26.) In these tests inflection points are obtained in the

pressure distributions along the plate surface somewhat similar to those

in the wedge tests, and these inflection points are also associated with

local separation of the turbulent boundary layer. The tests of Gadd and

Holder at a Mach number of 2 show no significant effect of Reynolds num-

ber on the value of Zkp/ql obtained at the inflection point for Reynolds



m B

t

0@ @@@ • • • •• ••o@ ••• @@_ •• ••

..... . ...........• ... ... . .

numbers ranging from about 0.8 × 106 to i0 × 106 . In figure 8 Ap/ql

is plotted against Mach number, where the inflection-point pressure

coefficients obtained in the wedge tests are given by the open symbols

and the inflection-point pressure coefficients obtained by the incident-

shock technique are given by the solid symbols. Also shown on this fig-

ure is the curve representing the data obtained by the forward-facing-

step technique. The data given on this figure, therefore, constitute

all information available at present on turbulent boundary-layer separa-

tion. The spread in _P/ql obtained at M 1 = 1.80 in the wedge tests

represents a Reynolds number effect, although, as mentioned previously,

no such Reynolds number effect was obtained at M 1 = 3.03. The spread

in 2_o/q1 at M 1 = 2 in the incident-shock tests represents the maxi-

mum scatter in the data. Although the available data are rather limited

in scope, the results show that the inflection-point pressure coefficients

obtained from both techniques generally have the same range of values

with inereasing Mach number and that on the average these values are

about 20 percent lower than those obtained using the step technique.

The application of these data for predicting separation should, there-

fore, be limited to these particular configurations, at least for the

present. For example, the data from the incident-shock technique repre-

sent conditions of local separation of the flow and, because the experi-

ments are performed on flat plates, the flow reattaches downstream of the

separation point. This reattachmentmay be changed somewhat for condi-

tions where a back pressure exists - for example, for conditions near the

trailing edge of an airfoil. Also, flight data for a wing in transonic

flow indicate that the _P/ql for separation is predicted more accurately

by the step data if extrapolated to the lower supersonic Mach numbers

obtained in the flight tests (ref. 27). These data are useful, then, in

providing a first approximation to the pressure coefficient for which

separation is likely to be encountered.

CONCLUDING R_MARKS

If

In conclusion, the present status of information relative to the

prediction of shock-induced boundary-layer separation indicates that,

although no unlversalvalue of pressure-rise coefficient which causes

incipient separation of the boundary layer has been found, there is a

fairly narrow band of pressure coefficients from which predictions of

turbulent separation can be made with an accuracy probably sufficient

for engineering purposes. On the basis of these results the following

tentative conclusions are given:

i. The data obtained with forward-facing steps, wedges, and inci-

dent shock waves indicate that there is a dependency of the pressure
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coefficient for separation on Reynolds number for the laminar boundary

layer but little_ if any, dependency on Reynolds number for the turbu-

lent boundary layer. There is a dependency of this pressure coefficient

on Mach number for both laminar and turbulent boundary layers.

2. For the particular case of the spoiler, the available data

obtained by the forward-facing-step technique permit calculations of

the loading on the surface ahead of the spoiler, the pressure on the

front face of the spoiler_ and the separation point ahead of the spoiler

for a Mach number range of from 1.55 to 3.65 for the turbulent boundary

layer.

3- For application to supersonic diffusers or scoop inlets_ the

available data from incident-shock-wave tests provide a first approxi-

mation to the minimum strength of shock which will separate the turbu-

lent boundary layer for Mach numbers between 2 and 3-

4. From the data available from the wedge tests_ a first approxi-

mation to the pressure coefficient for which separation becomes apprecia-

ble as a result of flap deflection can be made for a surface with a turou-

lent boundary layer for Mach numbers between 1.75 and 3.03.

5. Caution should be exercised in attempting to predict the separa-

tion or loading on configurations which differ considerably from those

for which experimental data are available. For example, fair success

has been obtained in predicting base pressure coefficients by the use

of the forward-facing-step data_ but reasons for this success are not

at present fully understood.
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A STUDY OF THE MOTION AND AERODYNAMIC HEATING

OF MISSILES ENTERING THE EARTH'S ATMOSPHERE

AT HIGH SUPERSONIC SPEEDS

By H. Julian Allen

Ames Aeronautical Laboratory

P

b

In the design of long-range rocket missiles one of the most diffi-

cult phases of flight with which the designer must cope is the re-entry

into the atmosphere. In the re-entry the rapidly increasing density

with decreasing altitude can promote large drag forces which, in turn,

can cause serious deceleration loads within the structure. More impor-

tant, the air temperature in the boundary layer can reach values in the

tens of thousands of degrees and this, combined with the high surface

shear, will promote very great heat transfer to the surface.

The designer should kuow_ then, what control he has over the mis-

sile characteristics which will permit a reduction of the problems

associated with the motion and, particularly, the aerodynamic heating.

The motion and heating of missiles, of course, has been given consider-

able attention by all designers of high-speed, long-range rockets, but

these analyses have been made for individual designs and so have not

been too instructive in giving an over-all view of the problems. In

this paper, which is a condensation of reference l, we shall discuss a

generalized analytical approach, purposely simplified so that the sali-

ent features of the problems will be made clear in order that success-

ful solutions of the problems will suggest themselves.

q

Consider first, the motion of a ballistic missile entering the

atmosphere shown in figure 1. The equations of motion expressing the

deceleration in vertical and horizontal directions are, respectively,

OV2CDA
d2Y g + sin 8
dt e 2m

where

O air density

d2x OV2CDA

dt2 2m

cos e
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V velocity

e flight-path angle to horizontal

CD drag coefficient

A reference area for drag evaluation

m mass

t time

x,y horizontal and vertical distances from impact point (0,0)

Analytical solutions of these equations would be extremely difficult

since the density is a function of altitude, while the drag coefficient,

the velocity, and the flight-path angle are functions of both x and y.

However, the greatest stumbling block in solution of these equatio-_

results from the presence of the gravity term, -g. For very high speed

missiles it would be expected that the gravity term would be small and

might be neglected in the range of altitude in which the deceleration

and heating are intense.

To investigate this possibility, consider the descent of a 1-foot-

diameter solid iron ball entering the atmosphere vertically at lO, O00

feet per second. It is known that for spheres the drag coefficient is

essentially constant and equalto unity. In figure 2, the solid curves

show the velocity and deceleration as a function of altitude as obtained

by step-by-step integration of the motion equation which includes the

gravity term. The dashed curves represent a similar solution neglecting

the gravity term. The close agreement shows that at the high flight

speeds considered here, the gravity term may be ignored without too

serious error. When this gravity term is neglected, the fllght-path

angle, e, becomes constant and equal to the entrance angle, eE. That is,

the trajectory is a straight line so that the drag coefficient, air den-

sity, and velocity may be expressed as functions of x or y,. and analyti-

cal solution of the equations of motion becomes feasible.

As a second step in obtaining analytical solutions, it is necessary

to express the density-altitude relation in analytic form. In figure 3

is shown a logarithmic plot of the NACA standard atmosphere variation

of density with altitude indicated by the solid llne. The dashed line

represents an approximation to the density-altitude relation using the

exponential type of variation, 0 = P_e-_Y with P_ set at O.OOB4 slug

per cubic foot and 6 set at (1/22,000) feet . In figure 4, the solid

curve shows the deceleration calculated by the step-by-step method, neg-

lecting the gravity-acceleration term, for the vertically descending

solid iron ball previously considered. The dashed curve shows the

deceleration obtained from an analytical solution, neglecting gravity

A
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acceleration, using the exponential expression for the density as a

function of altitude. It is clear that such an exponential density

relation gives satisfactory results when the constants are so chosen as

to give a good "fit" in the altitude range for which the deceleration

is large.

If it is assumed in the equations of motion that the gravity term

is negligible and that the exponential density relation is applicable,

it can be shown that for a missile with constant drag coefficient enter-

ing the atmosphere with the velocity VE at the flight-path angle eE,

the velocity at any altitude y is

CDPoA _By
-- e

V = VEe 2_m sin eE

and the corresponding deceleration is

dV/dt = CDPoAVE 2 e_py e

g 2rag

CDPoA _6y
m ' e

_m sln eE

The maximum deceleration can, then, be shown to be

--<dV_dt>1= _VEe2gesin 8E

which occurs when the velocity is

e-I/2VEVl = = 0.61VE

and the altitude is

l cDpoA

Yz = _ logs 8m sin eE

A strange feature of this solution is that the maximum deceleration is

independent of the physical characteristics of the body (that is, the

weight, size, and drag coefficient of the missile). It is a function
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only of the entrance speed and the entrance angle. Moreover, this maxi-

mum deceleration occurs at 61 percent of the entrance speed, again

regardless of the physical characteristics. On the other hand, the

altitude at which the maximum deceleration occurs is independent of the

entrance velocity but is a function of the body characteristics and of

the flight-path angle. As a demonstration of these points, let us con-

sider three solid iron balls, having diameters of 1/lO foot, 1 foot,

and l0 feet, entering the atmosphere at a speed of 20,000 feet per

second at a 45 ° flight-path angle. In figure 5 are shown the decele-

rations of these three spheres. There are several important points to

note here. Not only is the maximum deceleration the same for each

missile, but the deceleration curves are identical except for the fact

that they are shifted vertically, the smallest sphere reaching its

maximum deceleration at the highest altitude. The 10-foot sphere

happens to be of just such weight as to reach its maximum flight decel-

eration Just above sea level. Any larger sphere would, of course,

reach its maximum flight deceleration at sea level and that decele-

ration would be less than that shown here. Nevertheless, it should be

noted that the sphere sizes shown in this figure represent a tremendous

variation in weight, from 1/4 pound for the smallest to 250,000 pounds

for the largest. Hence it should be clear that for missiles of usual

weight, this maximum deceleration will be reached in the descent except

in the cases for which the drag coefficient is exceptionally low.

o

It was noted previously that the solutions given are applicable

only where the drag coefficient is constant, and one might expect that

such a solution would not be a satisfactory one except for very blunt

bodies, such as the spheres considered here. It can readily be shown,

however, that this is not the case. In figure 6 is shown the deceler-

ation and velocity for a 40 ° conical missile having a base area of lO

square feet and a weight of 5,000 pounds. The entrance velocity is

10,O00 feet per second and the entry flight path is 30 °. The constant

drag coefficient assumed in this analysis is that corresponding to con-

ditions at the altitude for maximum deceleration. In figure 7 are

shown the total and frictional drag coefficients calculated at each

altitude for the Mach and Reynolds number corresponding to this alti-

tude-velocity relation. It is seen that in spite of the large changes

in Mach number and Reynolds number, the drag characteristics arg nearly

constant in the altitude range where deceleration is large. This near

constancy results from the fact that while the effect of decreasing

Mach number with altitude is to increase the drag coefficients, the

effect of increasing Reynolds number with altitude is to decrease the

drag coefficients, and these effects are very nearly compensating.

In figures 8 and 9 are shown similar results for a missile identi-

cal to the one just described except that the cone angle is lO °. Again

we see that the frictional and total drag coefficients are nearly con-

stant in the altitude range where the deceleration is large. In the

heating analysis to follow, the assumption of constant frictional drag

T
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coefficient is permissible then, since, as will be seen later, the heat-

ing rate is proportional to the deceleration.

Let us next consider the far more serious problems resulting from

aerodynamic heating. For hlgh-speed ballistic rockets, the heah input

is very great, and, hence, a means of cooling must be provided to pre-

vent destruction of the essential elements of the missile. It is a

characteristic of rockets that for every pound of materlalwhich is

carried to "burn out," many pounds of fuel are required in the booster

to obtain the flight range. Hence, it is clear that the amount of

material which is added to protect the warhead from overheating must be

minimized to keep the take-off weight to a practicable value. Thus,

the first heating problem of interest concerns the total heat input

since this input determines the coolant weight. We will confine this

discussion to a comparison of the heat input of a missile of one shape

with that of another to determine what shape characteristics reduce the

heating. Hence, we will be interested in relative rather than absolute

heating so that the analysis will be simplified by the following

assumptions:

First, we will consider only convective heating, that is, we ignore

radiation to or from the body. Ignoring the radiation from the air to

the body is certainly permissible at the lower speeds, say of the order

of lO,O00 feet a second, although it may become inadmissible as the speed

is increased, say to the escape speed. Radiation from the missile will

certainly occur but since for any given missile design the surface will

be allowed to get as hot as structurally permissible, the radiatlon from

two designs considered will be very nearly the same and, hence, because

our interests are relative rather than absolute, the assumption is satis-

factory. The second assumption which is made is that imperfect gas

characteristic effects are ignored - in particular, dissociation. This

is again done on the basis that relative rather than absolute values are

of interest since for a given entrance speed the dissociation of the air

will be roughly comparable for two designs. The third assumption which

is made is that there is no interaction between shock waves ar_ the

boundary layer. Such an assumption is a good one at the lower speeds but

the work of Lees and Probstein (ref. 2) and Li and Nagamatsu (ref. B)

would indicate that at very high speeds serious effects of such _nter-

action can occur. Fourth, it is assumed that Reynolds analogy holds. A

recent examination of the effect of compressibility on the adequacy of

the Reynolds analogy by Rubesin (ref. 4) has indicated that the analogy

is a satisfactory assumption, at least in the speed ranges of the interest

of this paper, say the order of 10,O00 feet per second. Finally, it will

be assumed that the Prandtl number is unity. This assumption is justified,
again on the basis that relative rather than absolute values are of

interest.

The heat-transfer equation whichmust be solved is
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dH _ V dH sin eE = h(Tr - Tw)
dt dy

Q

Here H is the heat transfer per square foot of surface at any local

point on the surface of the missile and its change with time or with

altitude can be expressed as the product of the local heat-transfer

coefficient, h, and the difference between the recovery temperature and

the wall temperature, Tr - Tw. The heat-transfer coefficient

h _ Cf' PVcp

is proportional to the velocity, density, specific heat, and the equiv-

alent frictional drag coefficient, Cf', which is, in turn, proportional

to the frictional drag coefficient. As noted earlier, we will assume

the frictional .drag coefficient to be constant.

As regards the temperature difference

(Tr - Tw) = T + 721M2T - Tw

an important simplification which can be made at very high speeds is

that the recovery temperature due to high Mach number is so large that

the temperature, T - Tw, can be assumed to be negligible by compari-
son to 7---_IM2T, so that the temperature difference can be expressed as

2

(T r - Tw) = _-IM2 T V_

2 2Cp

If we now substitute the velocity and density as determined from the

motion analysis into the heating equation, the equation can be inte-

grated to give the total heat input which is

Q= _ (Cf 'S_mVE2
\CDA/

CDPoA

[l-e 8m sin eE]

*r

Here, the factor Q is the total heat input over the wetted area S.

Let us consider now the case of a missile which is relatively heavy.
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By this, we mean that in the exponent CDPoA/Sm sin eE, the denominator

is very large compared to the numerator. In this case the bracket term

can be expanded in series and, if we retain only the first term, we

find the total heat input is approximately

P

a_

I

This equation indicates that the least heating will occur for the rela-

tively heavy missile when the frictional drag is a minimum. This is

the usual expectation. On the other hand, if we have a relatively

light missile, that is, one for which the numerator of the above exponent

is large with respect to the denominator, then it can be shown that the

total heat input is approximately

Q 2 \2CoA

For this case we see a very interesting result that the heating will be

decreased by increasing the total drag, provided the frictional drag

does not increase proportionately as rapidly. This may at first seem

somewhat perplexing but we note that maklng the drag coefficient in the

exponential relation large or the mass small is equivalent to making

the terminal speed very low with respect to the entrance speed. This

1 mVE 2, must be converted to thermal
means that all the kinetic energy,

energy - that is, to heating both the atmosphere and the missile.

By making CDA large compared to Cf'S the maximum amount of heat is

delivered to the atmosphere and hence the missile is heated the least.

Thus, it appears that the optimum solution as regards the total heat

input depends upon the missile drag coefficient. To look into this

matter further let us consider the heating of conical-shaped missiles

entering the atmosphere at lO, O00 feet a second at a 30 ° flight-path

angle. For each of these missiles a constant base area of lO square

feet will be assumed. In figure lO is shown the total heat input, as a

function of cone angle, for missiles of lO00, _000, and lO, O00 _ounds

weight and, as a matter of interest, a hypothetical missile of

infinite weight. We note, here, that the minimum which occurs for the

small cone angles is that corresponding to a mlnimumvalue of Cf'S,

while the low heating for the large cone angles is a result of making

Cf'S/CD A a minimum. The minimum which we see here for the small cone

angle is not very pronounced since at the lower speeds the equivalent

frictional drag coefficient does not change rapidly with cone angle,

but, as is shown in figure ll, as the speed is increased this minimum
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is more accentuated and the advantage of the large cone angles less

apparent. Nevertheless, in general, it has been found that giving the

missile a high drag coefficient is nearly always the best for the most

usual weights of interest.

o

Let us now turn to another heating problem of serious importance.

As pointed out previously the time rate of heat input can be great for

these high-speed missiles. Many missiles are designed to absorb the

heat within the solid surface of the missile shell or to transmit it

through the shell to a coolant. For these missiles an excessively

large time rate of heat input may promote such large thermal stresses

as to cause spalling of the surface (and therefore result in a loss of

heat absorbent material) or even structural failure. The time rate of

heat input is also important for sweat-cooled missiles since it will

determine the required surface porosity and the liquid coolant pumping
rate.

The designer is interested in the maximum time rate of heat input

to an average surface element - since this is proportional to the aver-

age thermal shell stress and, therefore, determines the structural

strength of the missile as a whole - and the maximum time rate of heat

input at the surface elements of maximum heating - since this deter-

mines the local strength at these "hot spots."

Consider, first, the maximum time rate of heat transfer to an aver-

age surface element. Analysis has shown that in this ca_e, it is bet-

ter to make either the frictional drag coefficient a minimum or the

ratio of the frictional drag coefficient to the total drag per unit

dynamic pressure a minimum. In figure 12 it is seen that, considering

the same conical missiles as before at an entrance speed of lO,O00 feet

per second, small-cone-angle and large-cone-angle missiles have the

least maximum time rate of heat input for an average surface element.

Consider, next, the maximum time rate of heating at hot spots. The

local surface elements for which the heat-transfer rates are greatest

in practically every case will be those which first meet the air, for

then the boundary-layer thickness is least and, hence, the shear is

greatest. For the missile body this element is the nose and it'should

be noted at the outset that truly pointed bodies should be avoided, for

at the point the heat-transfer rate is tremendously high while the

point itself has no capacity for absorbing heat. Therefore, let us con-

sider only the case of a rounded-nose missile with a nose radius, o,

and discuss _he heating at the stagnation point. For such a body, the

bow shock wave is detached and is a normal shock on the stagnation

stream line. Thus, the high supersonic speed is converted to a low sub-

sonic speed flow after the shock. Accordingly, we may determine the

heating at the stagnation point by use of a low-speed analysis such as

that given by Sibulkin (ref. 5). The results of this analysis show that

the maximum heat-transfer rate is inversely proportional to the square
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root of the nose radius which indicates that the largest possible nose

radius should be employed. Let us now alter each of the conical mis-

siles previously considered to have a hemispherical nose of small but

arbitrary radius, o. In figure 13 is shown the product of the square

root of the nose radius times the maximum heat-transfer rate a_ the

stagnation point as a function of the cone angle. Here we see that the

minimum local heating is obtained by using the largest possible cone

angle; that is, the missile having the highest drag per unit dynamic

pressure is always the optimum as regards the heating at hot spots.

We should also note, in addition, that we have not considered wings or

wing-like tail surfaces for these missiles. It is the general experi-

ence of designers that stabilizer surfaces or wings should not be used

for these very high-speedmissiles since such surfaces are almost

impossible to cool.

Now let us look back from the designer's point of view on the

results which have been obtained. First, from the results of the

motion analysis we have seen that for long-ra_e ballistic rockets of

usual weights the maximum deceleration, except for missiles having

unusually low drag shapes, is constant and independent of the shape.

Thus, shapes having very high drag coefficients are not inferior to

those of more usual design. Second, as far as total heat input is con-

cerned, the missiles having the least ratio of frictional to total drag

are generally the optimum. These are, of course, high-drag-coefficient

shapes. Third, as regards the maximum time rate of heat input to an

average surface element, either the very low drag or the very high drag

shapes are best, but, fourth, as regards the local heating rate at hot

spots, local heating is always decreased by increasing the drag coefficient.

One shape, then, which would appear to have considerable promise is

a sphere for it has the following advantages: It is a very high drag

shape and its frictional drag is only a few percent of its total drag.

It has a maximum volume for its surface area; its continuously curved

surface is inherently stiff and strong. The large stagnation point

radius significantly assists in reducing the maximum thermal stress in

the shell. Aerodynamic forces are not sensitive to attitude and, hence,

there is no problem of stabilization. Because of this insensitivity to

attitude, the sphere may be purposely rotated in a random manne÷ to

subject all surface elements to about the same amount of heating and

thereby approach uniform shell heating. On the other hand, a spherical

missile may be unacceptable since it will have a low terminal speed and,

hence, may permit effective countermeasures. Also, the lower average

speed of descent will increase the wind-drift error at the target.

These possible disadvantages of very high drag shapes might be

alleviated by using variable geometry arrangements. To illustrate such

an arrangement, consider the missile shown in figure 14. Here it is

assumed that the warhead is contained within the high-flneness-ratio



forebody and that the afterbody is an extensible skirt acting as an air
brake which is flared to large angles, and therefore high drag_ when
the missile enters the atmosphere. As the air density increases with
decreasing altitude, the skirt flare is decreased so as to keep the
missile from decelerating to too small a terminal speed. The examples
considered are_ of course, only to demonstrate someof the means avail-
able to the designer to diminish someof the aerodynamic heating prob-
lems for such high-speed missiles.
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PROBLemS AND INITIAL EXPERIMENTS ON HEAT TRANSFER

AT HYPERSONIC SPEEDS

By A. J. Eggers, Jr., and A. C. Charters, Jr.

Ames Aeronautical Laboratory

a_

The significance of aerodynamic heating in hypersonic flight is per-

haps best demonstrated by the fact that solution of the heating problem

may in large part dictate the choices of aircraft structure and power-

plant. The preceding paper by H. Julian Allen on missiles penetrating

the earth's atmosphere provides substantial evidence to this effect.

Moreover, it points out that there are many gaps in the existing knowledge

of hypersonic heat transfer. One of the foremost of these gaps concerns

the behavior of air at the high temperatures encountered in hypersonic

flight. It is this matter with which the present paper is chiefly con-

cerned_ and, following a brief review of the subject, it is undertaken

to describe a novel apparatus and the results of initial experiments

aimed at determining hypersonic heat tra_nsfer to objects under conditiorm

of pressure and, especially, temperature actually found in the atmosphere.

First, it is instructive to obtain some idea of the magnitude of the

boundary-layer temperatures in hypersonic flight. Figure 1 shows the maxi-

mum temperature in the laminar boundary layer on a flat plate as a function

of Mach number assuming an insulated wall and assuming a wall temperature

equal to an ambient temperature of 500 ° R. These results were ootained

from the calculations of Van Driest for a constant Prandtl number of 0.75

and neglecting effects of dissociation and other phenomena which may occur

at the higher temperatures (see ref. 1). Ordinarily the wall temperature

of a missile would not be expected to fall below ambient temperature;

hence it is concluded that air in the hypersonic boundary layer is heated

to temperatures in the thousands of degrees. In this light it is not

surprising that heat is transferred very rapidly to a hypersonic missile

with any reasonably low surface temperature.

The heat-transfer process is complicated, however, by the fact that

basic physical properties of air such as the specific heats, viscosity,

and thermal conductivity may be profoundly altered, especially if appre-

ciable dissociation occurs at these high temperatures. Considerable

uncertainty exists at present as to the extent of these alterations. For

example, the variations with temperature of the specific heat at a pres-

sure of 1 atmosphere are shown in figure 2. The upper boundary is for the

case of dissociation equilibrium and was obtained by using the enthalpy

calculations of Krieger and White (see ref. 2). The lower boundary is for

the case of no dissociation. If the kinetics of dissociation were well-

understood, an estimate of the specific heat could be made for a particular
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flow, and it would probably lie somewhere between these two curves. The

kinetics of the rate process are not well-understood, however; thus it

must be concluded that at the higher temperatures, the specific heat may

be in doubt, even in order of magnitude. Knowledge of thermal conductivity

and viscosity at the high temperatures encountered in the hypersonic bound-

ary layer is also limited. As a result, different predictions of heat

transfer can be obtained. This point is illustrated in figure 3 which

shows, for a cool sphere, the ratio of stagnation-point heat-transfer rate

for dissociation equilibri_ to that for no dissociation, both rates being

calculated by the incompressible-flow method of Sibulkin (ref. 3) in com-

bination with the results of Hansen (ref. 4). It is predicted that, as

the Mach number increases above 5 in air of 500 ° R static temperature, the

ratio increases and reaches a value of about 2.5 at a Mach number of 15.

Recent studies at the Langley and Ames Laboratories indicate that the

effects of dissociation may be more compensating if variations in fluid

properties are considered, with the result that the over-all increase in

heat transfer, due to dissociation, may not be as large as shown in

figure 3.1 In any case, however, the flow process is not well-understood.

In view of the magnitude of the heat-transfer problem in h_vpersonic

flight, it seems fair to conclude from these considerations that experi-

ments must be conducted which will explore aerodynamic heating on a prop-

erly scaled model. Attention is given next, therefore, to experimental

methods of obtaining a "hot" hypersonic air stream.

The continuous-flow wind tunnel appears to be unsuited for this pur-

pose because of the extreme difficulties of heating and cooling the air

an_of preventing structural failure. Rather, then, some more novel type
of equipment appears to be required.

In this connection, the shock tube is an attractive apparatus,

especially when employed after the method of Hertzberg (see ref. 7). As

is well-known, however, this apparatus tends to assume very large propor-

tions if running times in excess of milliseconds are desired. Longer

running times are, of course, desirable from the standpoint of making

heat-transfer measurements.

With these points in mind, a search was made for a rapid compression

process which would create a reservoir of air at high pressure and,

especially, at high temperature. For this purpose, irreversible adiabatic

compression deserves attention, since it can, by means of shock waves,

Q

4b

I Moore (ref. 5) and Crown (ref. 6) have found in their analyses

of the-flat-plate case that here also there is noteworthy compensation

of dissociation effects. The degree of compensation is open to question,

however, inasmuch as both of these analyses appear to be in some error

(see ref. 4).
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produce a large temperature rise _ith a large pressure rise. In fact,

the more inefficient or irreversible the compression process, the larger

the temperature and the larger the final volume of the compressed air.

This characteristic is desired because the large temperature coupled with

high pressure suggests that with the aid of a nozzle a hypersonic air

stream can be generated having the same free-stream temperature and pres-

sure as are encountered in the atmosphere. Furthermore, with the rela-

tively large volume of the compressed air, it is suggested that this stream

can be made of substantial duration, thereby facilitating heat-transfer
measurements.

e

In order to investigate these possibilities, an apparatus, com-

pressing air in the irreversible adiabatic manner and then exhausting

it through a hypersonic nozzle, has been developed at the Ames Labora-

tory. This apparatus is termed a hypersonic gun tunnel and is shown

schematically in figure 4. In the upper part of this figure is shown the

gun tunnel as it appears before firing. The nozzle extends laterally

from the gun tube and is isolated from the interior of the barrel by a

valve. Air on both sides of this valve is fixed at a pressure of lO

atmospheres and at ambient temperature. The compressor piston is of

light weight and is located in the position normally occupied by the pro-

jectile for the gun. When the gun is fired, this piston is accelerated

rapidly to high velocity and sends out strong shock waves which compress

and heat the air in the gum barrel. These waves strike the valve piston

covering the nozzle and set it into motion toward the muzzle end of the

gun, forcing the air between this piston and the muzzle out through the

port. Because of the strong damping in the compression process, the

system returns to equilibrium very rapidly, requiring only several hun-

dredths of a second. The e_uilibrium configuration is shown in the lower

portion of this figure. The powder is now in the gaseous state and the

trapped air has been compressed to a pressure of about 300 atmospheres.

Assuming conservatively an irreversible adiabatic process with the working

pressure equal to the final pressure, the final air temperature would be

estimated to be about 5,000 ° R. Inasmuch as the nozzle is now open, this

air passes out through the nozzle and forms a hypersonic stream about the

model - the steam duration is of the order of 1 second. At the same time,

the powder gases are allowed to leak out of the gun barrel at a slower

rate through the exhaust port at the breech end of the barrel.

A heavy-wall 20-ram smooth-bore gun was employed in the test apparatus

which is shown in figures _ and 6. Figure _ is a photograph of the complete

assembly; the gun mounted on an I-beam fastened to the wall of the test

chamber can be seen stretching diagonally across the center of the picture

with its breech at the right and muzzle at the left. The nozzle extends

vertically down from the muzzle to the vacuum tank. The vacuum tank and

pump can be seen placed on the floor of the test chamber to the left of _

the gun installation. Figure 6 is an enlargement of the nozzle unit and

shows the windows of the working section and the outline of the principal
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schlieren objective mirror attached to the wall behind the working sec-

tion. The compressor piston was a i/2-caliber nylon cylinder and the

valve piston was a 3-caliber nylon cylinder. The nozzle air passage was

conical in shape and had a throat diameter of 0.021 inch, a length of

6 inches, and a test-section diameter of i inch. Models were located at

the exit of the nozzle and were sting supported from below.

8

O
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Initial experiments included firings with the hypersonic nozzle and

nozzle valve removed from the barrel. Several schlieren photographs of

the flow from the muzzle port are shown in figures 7(a) and 7(b). One

millisecond after firing the gun, a long tongue of incandescent gas can

be seen extending approximately i foot to the rigl_t from tl_e muzzle port.

Two milliseconds after firing, the incandescence has disappeared and the

Jet seems almost to be errupting. Six milliseconds after firing, the

flow has steadied down considerably, although there is observed a second

surge of incandescent gas, somewhat smaller in extent than the first.

There is some indication that these surges occur each time a strong shock

or series of shocks collides with the muzzle cap. In any case, after

about 50 milliseconds have elapsed, flow from the muzzle port takes on

the familiar steady character with more or less equally spaced shock sys-

tems. From this time on, until all the air has been exhausted from the

gun, there is no apparent change in the flow from the muzzle port. This

was the first experimental evidence that the duration of the nonsteady

compression process would be short compared to the 1-second duration of

flow from the hypersonic nozzle. Also, these experiments confirmed the

need for the nozzle valve to protect the nozzle and test models from the

initial surges of extremely high-temperature, high-pressure air.

b

Preliminary calibration of the nozzle was undertaken in the following

manner: Pitot and static pressures were measured with conventional tubes

connected to variable-capacitance gages. Using these two stream proper-

ties and the fact that pitot pressure is essentially twice the dynamic

pressure in a hypersonic stream, the Mach number was found to be approx-

imately 6.7. It is necessary to know at least one other property of the

stream in order to fix the state of the gas with reasonable certainty.

Therefore a direct measurement of stream velocity was made. For this

purpose a spark discharge was created near the exit of the nozzle. The

resulting pressure disturbance was photographed as it passed through the

test section. The velocity of the center of the disturbance was deter-

mined from measurements of the distance traveled by the center and the

time of travel. This velocity closely approximates the stream velocity

and was found to be about 8,200 ft/sec.

The stream velocity and the dynamic pressure determine the stream

density; and the stream temperat<u_e can _ computed from the stream den-

sity and the static pressure, provided the gas constant is known. The

magnitude of the gas constant depends of course not only on the air tem-

perature, but also on how nearly the air, in expanding out through the
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nozzle, has achieved a state of thermal equilibrium, especially as regards

dissociation. It is believed that dissociation is negligible, except in

the disturbed flow about models in the present tests. This opinion is

held because the stagnation pressures appear to be too large by conserva-

tive estimate to permit appreciable dissociation in the reservoir. It was

tentatively assumed, therefore, that the usual value for the gas constant

applied, and this value was used to calculate the stream static tempera-

ture. A temperature of 670° R was obtained, which value is low enough to

support the initial assumption regarding the gas constant. It should be

noted that this temperature is, as desired, equal to those ordinarily

encountered in the earth's atmosphere. Also, an effective stagnation tem-

perat_Ire of about 6,700 ° R is indicated by these results, which is not out

of line with the estimated value of 5,000 ° R.

Several measurements were made of each of the stream properties just

discussed, and it was found that they varied by less than +_i0 percent from

one r1_n to another. It was therefore undertaken to make preliminary meas-

urements of heat transfer in this stream. In particular, measurements of

the temperature rise at the stagnation point of a hemisphere and of the

temperature rise of a cylinder were made. Results of measurements for the

hemisphere are shown in figure 8. Results of measurements for the cylinder

are shown in figure 9. The hemisphere was a copper shell of 0.2,inch diam-

eter with a O.Ol-inch thick wall. The shell was one leg of a thermocouple.

The other leg was a constantan wire attached to the inside of the shell at

the stagnation point. The test conditions are as indicated, the equiva-

lent pressure altitude being about 115,000 feet. A schlieren photograph

of flow about the model is also shown in figure 8. In addition to exper-

imental data, the temperature-rise rates calculated by the method of

Sibulkin are shown for the cases of equilibrium dissociation and no dis-

sociation (see refs. 2, 3, and 4). These calculated rates bracket the

experimental rate initially, being 6,300 ° R per second for no dissociation

and 15,000 ° R per second for dissociation equilibrium - the corresponding

heat-transfer rates are 280 Btu/ft2-sec and 660 Btu/ft2-sec, respectively.

These results suggest that in the present tests the time of passage through

the bow wave and past the stagnation point was too short for the air to

achieve thermal equilibrium.

Considering now the cylinder tests, the model in this case was an

iron-constantan cylinder 0.040 inch in diameter. The thermocouple Joint

of the two materials was located on the nozzle center line. The initial

temperature-ris@ rate of the cylinder is about 2,500 ° R per second and the

corresponding heat-transfer rate is ll0 Btu/ft2-sec. This rate is sub-

stantially lower than that measured at the stagnation point of the hemi-

sphere, which result is attributable in good part to the very high heat-

transfer rates at the stagnation point. This matter was discussed in

the previous paper by H. Julian Allen.



In analyzing the hemisphere and cylinder data, only the initial heat-
transfer rates have been considered and, in fact, the experimental data
for only the first 0.i second of flow have been presented. It is observed
that even in this short period of time the measured temperature-rise rates
have decreased significantly. This result is attributed primarily to
transfer of heat tb_roughthe models_ away from the locations at which tem-
peratures were measured, and is not thought to be indicative of a large
reduction in the rate of heat transfer into the models.

In summary, it is pointed out that existing information on the behav-
ior of air at the high temperatures encountered in hypersonic flight is
both meager and in somecases conflicting. This situation seriously limits
knowledge of hypersonic heat transfer. An apparatus termed the hypersonic
gun tunnel has therefore been developed with the specific purpose of pro-
riding data on hypersonic heat transfer to objects under conditions of
pressure and, especially, temperature found in the atmosphere. Results
have been presented which indicate that the apparatus is a workable device
for producing a "hot" hypersonic air stream. Finally, preliminary heat-
transfer data have been obtained for a cylinder and at the stagnation
point of a hemisphere immersedin this stream.

8
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E_LPLORATORY TESTS OF THE ALLEVIATION OF AERODYNAMIC

HEATING BY WATER TRANSPIRATION COOLING

AT MACH NUMBER 2

By William J. O'Sullivan, Jr., Leo T. Chauvin,

and Charles B. Rumsey

Langley Aeronautical Laboratory

@

In the last few years the phenomenon of aerodynamic heating in

supersonic flight has been investigated, correlated with theory, and its

destructive effects upon aircraft structures recognized and demonstrated

(for example, refs. 1 to 4). Gas and liquid transpiration cooling have

been proposed and are being investigated as a means of cooling turbojets,

rocket motors, and their nozzles (for example, refs. 5 to 7). This paper

deals with recent exploratory tests (ref. 8) of water transpiration

cooling as a means of alleviating aerodyn_mic heating of aircraft struc-

tures at supersonic speeds.

Shown schematically in figure 1 is a conical model of 8° total apex

angle equipped with transpiration cooling and installed in a free-air

jet. The cooling water entered through the base of the model and emerged

through the porous band. Means were provided for measuring the tempera-

ture of the entering water and its mass rate of flow. Twenty-eight

thermocouples were installed in the skin of the model back of the porous

band to measure skin temperatures. The length of the model from apex to

rearmost thermocouple was 10.6 inches. The air jet had a Mach number of

2.05 and approximately sea-level temperature and static pressure for a

hot day.

Tests were first made without water to measure the dry recovery

factors and h_a+-+_sm_er _-_-+_ on +_................... _ .... _,e cone.

In figure 2 the measured recovery factors plotted against distance

along the cone back of the porous band are shown as circled points. For

comparison, the theoretical recovery factors for a lamlnar and a turbulent

boundary layer, based on the Prandtl number just outside the boundary

layer (refs. 9 and 10), are shown as solid curves. The measured recovery

factors are in close agreement with the theoretical turbulent value.

The measured heat-transfer coefficients are presented in figure 3

in terms of dimensionless parameters for comparison with theory. The

ordinate is the Nusselt number, which contains the heat-transfer coef-

ficient, divided by the cube root of the Prandtl number. The abscissa
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is the Reynolds number. These dimensionless parameters are based upon

conditions just outside the boundary layer and distance from the apex

of the cone. The thermal ratio is the skin temperature TW divided by

the temperature just outside the boundary layer TI. Experimental points

are shown for thermal ratios of 1.48, 1.52, and 1.56. For comparison,

Van Driest's theoretical curve for a thermal ratio of 1.52 (ref. ii) is

drawn through the experimental points. The theoretical curves for therlm_l

ratios of 1.48 and 1.56 would lie, respectively, upon the upper and lower

edges of the curve shown. Also sho_m is the experimental flat-plate

laminar-boundary-layer curve (ref. 12) corrected to a cone by the theory

of Mangler (ref. 15). The heat-transfer measurements agree with the

recovery-factor measurements in indicating a turbulent boundary layer.

In figure 4 the steady skin temperature maintained with 52 ° F cooling

water at a mass-flow rate of 0.01 pound of water per second is plotted

against position along the model back of the porous band. The entire

model skin back of the porous band was uniformly cooled to about 125 ° F,

and cooling extended an unknown distance beyond the end of the model.

For comparison the skin temperature of 500 ° F that would have existed

without cooling as determined from the dry tests is shown. The temper-
ature difference is 575 ° F.

The temperature contours measured when the cooling-water flow rate

was reduced to the point where uniform cooling did not occur over the

entire length of the model are shown in figure 5 upon a development of

the model's surface. The skin temperature was held to between 115 ° F

and 125 ° F back to nearly the third band of thermocouples and thereafter

rose rapidly, except for a cool strip, toward the temperature of 498 ° F

which would have been the skin temperature without cooling. The cool

strip may be due to slight angle of attack of the model. The cooling

water entered the model at 50 ° F at amass-flow rate of 0.0025 pound per

second. If the cool strip is disregarded and only the uniformly cooled

area forward of the 125 ° F contour is considered, the water expenditure

rate is 2.72 pounds or 0.55 gallon per minute per square foot of cooled

surface. An ideal water jacket attached to the under surface of the

skin would require about four times as much water to produce the same skin

temperature.

An attempt has been made to calculate the skin temperature produced

by water-transpiration cooling. The process was visualized as one of

evaporation of the water from the model surface into the bottom of the

boundary layer producing saturation of the lowermost layer of air. The

cooling is thus assumed analogous to the cooling of the wet bulb of the
•_±±L_ wet --_ _-- b_u -_ _....... _.... _-

of humidity. Accordingly, the cooled-skin temperature can be conven-

iently calculated by use of a variation of the sling psychrometer chart

m
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shown in figure 6. The ordinate is temperature and the abscissa is the

absolute humidity or pounds of water contained in 1 pound of air. Drawn

across the graph is the saturation curve for the particular total air

pressure upon the surface of the conical model, which was approximately
1 atmosphere. The air at the surface of the model is considered to be

initially at the dry adiabatic wall temperature and therefore is pr%cti-

cally dry. Evaporation of water is assumed to take place into the air

until saturation occurs. The air temperature is thereby lowered, but

the enthalpy or total heat content must remain constant. In reading

the chart, start with the dry-air adiabatic wall temperature, proceed

along a curve of constant enthalpy until the saturation curve is reached,

and there read the temperature of the air-water vapor mixture adjacent

to the water film on the model. Under steady cooling, this temperature

must also be the temperature of the water film and hence the skin tempera-

ture. When the dry adiabatic wall temperature of 900 ° F employed in the

tests is used, the calculated skin temperature is found to be 124 ° F;

this value agrees almost exactly with the measured skin temperature.

These exploratory tests show that water-transpiration cooling

produces large reductions in equilibrium skin temperature at Mach number 2

at high Reynolds numbers. These tests show that on an 8° cone in axially

symmetric flow the cooling is nearly uniform for a considerable distance

downstream of the point of water release; therefore, the entire cooled

surface need not be porous, and heavy and expensive double-wall construc-

tion associated with a continuous porous skin may not be required. The

physical process of the cooling phenomenon has been visualized as that

of evaporation, and the degree of cooling so calculated was found to

agree with experiment. Although one is tempted to proceed to the pre-

diction of the skin temperature under transpiration cooling at other

Mach numbers, altitudes, and with other cooling liquids, it is considered

that further tests should be performed before confidence could be placed

in such predictions.

,,f
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MODEL EXPERIMENTS OF BOMB RELEASES AT SUPERSONIC SPEEDS

By Robert W. Rainey

Langley Aeronautical Laboratory

INTRODUCTION

W

A recent problem of major concern with regard to supersonic bomber-

type aircraft is the attainment of successful release and breakaway

characteristics of bombs or stores. For the release and breakaway to

be successful, certain essential performance requirements must be met

which concern both the aircraft and the bomb or store. Insofar as the

aircraft is concerned, the bomb must not strike or endanger the air-

craft or its equipment; with regard to the bomb, it not only must clear

the aircraft but, because of possible instrumentation within the bomb,

it must also avoid rapid accelerations and decelerations and, conse-

quently, appreciable angles of pitch and yaw. It becomes apparent that

the interference factors which might cause the bomb to diverge from a

near-level attitude during release and breakaway must be minimized.

In an effort to shed some light on this release problem, drop tests

have been made in the Langley 9-inch supersonic tunnel at a M_ch number

of 1.62 of four bomb shapes released from several fuselage bomb-bay con-

figurations and from several pylons beneath a swept wing. These tests

were primarily of an exploratory nature to determine what first-order

detrimental interference effects are involved. In these tests the break-

away characteristics and initial trajectories were observed and recorded.

Approximately 250 drop tests have been made to date.

MODEL CONFIGURATIONS

As shown in figure i, the four bomb configurations consisted of

a 1/50-scale model of the 900-poundDouglas Aircraft Co. store shape

having a fineness ratio of about 8.6, the same body shape but with

enlarged and modified tail fins, and two models having fineness ratios

of 9 and 7 which were equipped with the same enlarged fins. The fore-

bodies and afterbodies of each of the two latter configurations consisted

of circular arcs of revolution joined tangentially at 40 percent of the

body length. The actual body length of all models was about the same and

was approximately _ inches.
-2

In figure 2 are presented five of the fuselage--bomb-bay configu-

rations, and their designations, from which bomb-drop tests were made.
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The fuselage was mounted from the tunnel side wall beneath a wing having

a rectangular plan form and wedge leading and trailing edges. The bombs

were held in place in a 45 ° roll attitude by a spring-loaded wire and

were released mechanically in a manner which did not disturb the bomb;

at the same time the drop was photographed with a high-speed motion-

picture camera which took approximately I000 frames per second.

In figure 3 is presented a typical bomb-wing-pylon installation.

The wing was mounted on the tunnel side wall and was an untapered,

30 ° swept wing having an NACA 65-009 airfoil section normal to the

leading edge. The majority of the drop tests to determine the effects

of variation in simulated altitude and chordwise and vertical location

of the bomb installation were made from the 80-percent-semispan station.

Here again the bombs were released manually, and their release character-

istics were recorded by a high-speed motion-picture camera.

o

e

SIMILARITY RELATION

Because the Mach number had to be duplicated and because of the

limitations of tunnel operation and tunnel size, complete simulation of

prototype conditions is impossible and simulation is restricted to

dynamic pressure and bomb mass. Therefore, the ratio of the drag to the

gravitational force is simulated:

Gravity force/prototype \Gravity forCe/mode I

This means that the path of the model center of gravity essentially

duplicates the path of the prototype center of gravity.

This drag--gravitational-force ratio reduces to the form:

w 3 \ /model\ Z /prototype

where CD in the drag coefficient, q is the dynamic pressure_ _ is

a representative length, and w is the average bomb density. For these

tests, CDprototype was assumed equal to CDmodel; therefore,

= (w-_)model(W_)prototype q

q
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For these tests the prototype was assumed to be a 900-poundDouglas

Aircraft Co. store which establishes Zprototype and Wprototype which

is given in the following table along with the average bomb densities
for three other bombs:

500-1b

900-1b

l, 000-lb

lO, O00-1b

Bomb

Douglas Aircraft Co. store

General-purpose M-43

General-purpose M-44
Standard

Average bomb

density, w,
lb/cu ft

91

191
198
131

Altitudes were assumed to vary from about sea level to about 40,000 feet

which established qprototype" Limitations in tunnel slze determined

Zmodel; and, in order to fulfill the similarity relation, qmodel

divided by Wmode I had to be of small magnitude. Therefore, the tunnel

was operated at low stagnation pressures, and the models were constructed

of lead. Variations in prototype altitude were simulated through vari-

ations in tunnel stagnation pressure and, consequently, tunnel dynamic

pressure. For a given simulated altitude, the tunnel dynamic pressure

was the same for all models, and the shape of the trajectory at one

simulated altitude might be essentially the same as that for the same

bomb configuration with a different density and at a different altitude.

The inadequacy of the unavoidably low Reynolds numbers of the tests

is recognized; however, as shown in figure 4 which presents results from

reference l, the bomb configurations are stable about their centers of

gravity in the upper Reynolds number range of these drop tests. Schlieren

photographs also presented in reference 1 indicated that, in the upper

]_m__t of the Reynolds number range of these drop tests, the flow separated

at the maximum diameters of the models; therefore, center-of-pressure

shifts, if any, would be expected to be small at lower Reynolds numbers.

Further, there are no forward center-of-pressure shifts as a result of

increasing the Reynolds number to lO × lO 6, and rearward shifts are small,

with the possible exclusion of the Douglas Aircraft Co. store. The

Reynolds number inadequacy can, therefore, be discarded as having any

overshadowing effect in the drop tests. Attention is drawn to the large

shift in center of pressure which results from enlarging and modifying
the fins on the Douglas Aircraft Co. store shape.

As previously stated, it was assumed that the prototype drag coef-

ficient is the same as the model drag coefficient in the similarity

relation; however, as also presented in reference l, the model drag
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coefficients were considerably lower than the prototype drag coef-

ficients, and this would show up as an increase in simulated altitude.

Because the moment-of-inertia requirements for simulation are not

met, the model attitude is representative of prototype attitude in level

or near-level drops only; however, it is emphasized that the purpose of

these tests is to achieve level or near-level drops. In order to assess

the release characteristics of these bomb drops, the film records have

been plotted in the form of trajectory diagrams to show the attitude and

position of the bombs every 1/120 second. As a matter of convenience in

presenting the results, each release has been classified as good,

marginal, or unacceptable. It should be remembered that, because moment

of inertia is not simulated, these classifications primarily specify the

relative severity of the interference effects upon the bomb. An example

of each of the three classifications is presented in figure 5. These

releases were made from the fuselage with the conventional box-type bomb

bay.

A release classified as good always cleared the aircraft and main-

tained a near-level attitude. Such model releases should be applicable

to the prototype conditions because moment-of-inertia simulation is not

required for the near-level drops. All other releases involved changes

in attitude; therefore, the extent to which these releases simulate the

prototype conditions is doubtful. It is possible to separate these

remaining releases into two catagories; one, classified as marginal, in

which only moderate interference effects appear evident and the model

bomb did not undergo extreme changes in attitude and cleared the fuselage

in good fashion, and, two, classified as unacceptable, in which large

interference effects appear evident and the model bomb undergoes large

changes in attitude and also might endanger the fuselage. The bound-

aries of these two catagories are arbitrary and subject to individual

interpretation.

O

RESULTS AND DISCUSSION

Bomb Releases From Fuselage

In analyzing the bomb releases made from the conventional box-type

bomb bay (see table I and fig. 6), it was found that the nose-down

tendency, shown in figure 5, could be lessened through an increase in

body size or a decrease in fin size. Tuft studies of the flow within

the bomb bay indicated that a strong counterclockwise circulation of

flow was present similar to that noted previously during a subsonic

bomb-drop investigation in the Langley 300 MPH 7- by lO-foot tunnel and

reported in reference 2. Apparently the increase in body size, accom-

plished by a reduction in fineness ratio, restricted and weakened this
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flow circulation, thereby reducing the nose-down attitude of the bomb

during release. Likewise, the smaller fins on the Douglas Aircraft Co.

store resulted in a smaller increment of interference lift at the tail

and lessened the nose-down pitching-moment increment. Increases in

simulated altitude generally improved the release characteristics, and

good releases were obtained with the Douglas Aircraft Co. store and the

bomb of fineness ratio } at a simulated altitude of 40,000 feet only.

Efforts to lessen the nose-down tendency during the release phases

of the Douglas Aircraft Co. store at lower altitudes included the instal-

lation of solid and perforated spoilers at the front of the bomb bay,

setting the fuselage at positive and negative angle of attack of 4° and

setting the bomb at a positive angle of incidence of 4 ° with the fuselage

at 0° angle of attack. Improvement of the release characteristics was

obtained only in the case of the fuselage at a negative angle of attack

of 4 ° , and good releases were obtained at simulated altitudes of 30,000

and _0,000 feet. It was also found that the installation of three baffles

across the interior of the bomb bay would alter the flow within the bomb

bay sufficiently to obtain good drops with all bombs over a relatively

wide range of simulated altitudes.

Removal of the forward and rearward inner portions of the fuselage

modified the box-type bomb bay into a complete channel (see fig. 2).

This alleviated the aforementioned flow circulation and removed most of

the nose-down tendency; the small nose-down tendency which remained was

probably due to the flow blockage and pressure increase between the top

of the channel and the forward portions of the bombs (see fig. 6).

Changes in bomb configurations or simulated altitude had little effect

upon the releases, all of which were marginal or good (see table I).

The bomb releases from the semiexternal bomb bay showed strong

nose-up tendencies, and the only good releases obtained were with the

bombs of fineness ratio 8.6 at 30,000 feet (see table I and fig. 7). It

is believed that the bomb cavity deflected the flow downward onto the

afterportions of the bomb during the initial release phases and caused

the nose-up tendency. Suspending the bomb on struts 0.2 bomb length

below the fuselage (see the semlexternal bomb bay with struts in figs. 2

and 7) did not remove the bomb far enough from the cavity to improve the

release characteristics. However, removing the cavity, as in the case

of the external bomb bay, did alleviate the situation, and good drops

were obtained over a relatively wide range of altitudes for the large-

finned bombs. In using these three latter bomb bays, increases in static

margin of the bomb or simulated altitude were beneficial to the release

characteristics (see table I).
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Bomb Releases From Wing Pylons

The majority of the wing-pylon releases, as shown in figure 3, were

made from the 80-percent-semispan station using a short-chord pylon at

20,000 and 30,000 feet simulated altitudes. The Douglas Aircraft Co.

store was not used in these tests. Because the flow beneath the wing

impinged on the forward portions of the bombs, unacceptable nose-down

tendencies were evident for all bombs released from position I (see

fig. 8), and the fins gouged into the lower wing surface. Shifting the

bombs to position II or IIl did not relieve the condition appreciably;

however, at position IV the nose-down tendency was replaced by nose-up

tendencies for the bombs of fineness ratio 5 and 7 resulting in marginal

releases. Good releases were obtained with the bomb of fineness ratio 8.6.

A summary of the wing-pylon releases is presented in table II. In an

effort to alleviate the fin gouging noted during the releases of the

bombs at position I, the trailing edge of the pylon was extended to the

rear of the bomb so that during the nose-down portion of the release, the

rotation would take place about the rear of the bomb. This pylon is

designated the long-chord pylon in figure 8. This scheme was effective

in eliminating the fin gouging of all bombs; and, in the case of the

bombs of fineness ratio 7 and 8.6, the release characteristics were mar-

ginal at all simulated altitudes as compared to unacceptable for the

short-chord-pylon releases.

Two additional releases were made from the 40-percent-semispan sta-

tion using the bomb of fineness ratio 7 at position Ill. No changes in

the release characteristics were evident as a result of moving the bomb-
release station inboard.

i

w

*m

I

CONCLUSIONS

As a result of these bomb-drop tests at a Mach number of 1.62, the

following conclusions are indicated:

i. The effects of increasing altitude were, in most cases, bene-

ficial to the release characteristics of a bomb; these effects were never

detrimental.

2. In making releases from an internal box-type bomb bay of the

type common to subsonic bombers, it appears beneficial to reduce the

flow circulation within the bomb bay by reducing the clearance around

the bomb or by using baffles.

3. In general, the release characteristics of bomb drops from the

complete channel, the external bomb bay, and the box-type bomb bay with

baffles were superior throughout a wide range of altitudes to the releases

from the other bomb bays.

%-
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4. In making releases from semlexternal or external mounts below

the fuselage and from pylons beneath the wing, an increase in static
margin improves the release characteristics.

_. The bomb position which results in the best releases from the

wing-pylon mount appears to be very close to that which gives the least

drag rise due to the addition of a similar bomb-pylon installation as

indicated in reference 3.
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TABLE I.- SUMMARY CHART OF RELEASES FROM FUSELAGES

D

q

Bomb -bay

configurations

Conventional

box type

I

Convent ional

box type

with 3 baffles

Complete
channel

Semiexternal

3emiexternal

with struts

External

Bomb

fineness

ratio

5
7
8.6

8.6 (D.A.C.

5
7

8.6

8.6 (D. A. C.

5
7

8.6

8.6 (O.A.C.

5
7
8.6

8.6 (O.A.C.

5
7

8.6

8.6 (D.A.C.

5
7

8.6

8.6 (D.A.C.

) U

M

G

) G

M

M

M

) M

) U

U

M

M

) U

M

G

G

) U

*Release characteristics at

simulated altitudes of -

i0,000 20,000 30, O00140,000

ft ft ft ft

M

U

U

U

G

G

G

M

M

M

M

U

U

M

M

U

U

M

M

M

G

M

U

M

G

G

U

M

G

G

G

G

G

G

G

M

U

G

Bomb motion

for M and U

classifications

Nosed down

Slight nose-up,
then nose-down

Nosed down

slightly

Nosed up

Nosed up

Nosed up

G = Good.

M = Marginal.

U = Unacceptable.

U

M

M

M

G

G

M

1.1
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TABLE II.- SUMMARY CHART OF WING-PYLON RELEASES

P

Bomb

position

I

II

III

IV

Bomb

fineness

ratio

aRelease characteristics at

simulated altitudes of -

20, O00 50,000
ft ft

Bomb motion

for M and U

classifications

SHORT-PYLON RESULTS

5

7
8.6

5
?
8.6

5

7
8.6

7
8.6

U

U

U

U

U

M

U

U

U

U

U
bG

U

U

U

U
U
M

U
U

U

M

M

G

Nosed down

Nosed down

Nosed down

Nosed up

9

7
8.6

LONG-PYLON

U

bM

RESULTS

U

M

M

Nosed down

s13 = Good _j_NAqA/

M =Marginal

U = Unacceptable.

bRelease characteristics were marginal at i0,000 feet.
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BOMB CONFIGURATIONS TESTED

• c.g. _

FINENESS RATIO, 8.6
DOUGLAS AIRCRAFT CO. STORE

,_ c.g.

FINENESS RATIO, 8.6

FINENESS RATIO, 7.0

FINENESS RATIO, ,5.0

FIN SPAN:

2.01 DMA x

2.39 DMA x

1.91 DMA x

MAXIMUM DIAMETER,
DMAX, AT 40% LENGTH

CENTER OF GRAVITY,
e.g., AT APPROX. 45%
LENGTH

•vr2" DMAX

Figure I

BOMB- BAY CONFIGURATI ONS

WIND-TUNNEL
SIDE WALL

V _ ;:_
, "_ _ _ <7,) '

_/---_ CONVENTIONAL BOX TYPE

BOMB LENGTH_--" _'_ ......_ - _ _-W '

COMPLETE CHANNEL

A

SEMIEXTERNAL

-_ _ ._--"_
SEMIEXTERNAL WITH STRUTS

" " EXTERNAL

Figure 2

11"

'1,,,
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v

TYPICAL BOMB-WING-PYLON INSTALLATION

////////////////////////////

I_ _---WIND-TUNNEL SIDE WALL

DROP TESTS)

t,,
TRAILING-EDGE, SHORT-CHORD PYLON_

v
RACE

Figure 3

p

CENTER-OF-PRESSURE POSITION OF BOMBS AT a=O °

1t"

NOSE 0

.2

.4

1.0
TAIL

0

,---REYNOLDS NUMBER RANGE OF THESE TESTS

._TYPIGAL CENTER-OF-GRAVITY LOCATION (0.457,)

ER.= 5D ER.-7.0 ER.=8.6 F.R.=8.6 (D.A.C.)

f I I I f ! I I ] I
2 4 6 8 I0 x 106

REYNOLDS NUMBER

Figure 4
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D

EXAMPLES OF GOOD MARGINAL AND UNACCEPTABLE
BREAK _,VV_,_'CHARACZI'ERISTICS

GOOD MARGINAL

FINS REMOVED FOR CLARITY

Figure 5

INTERNAL BOMB-BAY CONFIGURATIONS

CONVENTIONAL BOX-TYPE BOMB BAY

V

SHOWING RELATIVE BODY SIZES

V

SHOWING RELATIVE FIN SIZES
ON FINENESS-RATIO- 8.6 BOMBS

COMPLETE CHANNEL

V

Figure 6
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Q

EXTERNAL BOMB-BAY CONFIGURATION

FINENESS- RATIO- 5 BOMB

SEMIEXTERNAL SEMIEXTERNAL WITH STRUTS

EXTERNAL

Figure 7

o

BOMB LOCATIONS FOR WING-PYLON RELEASES

DISTANCE ] lAHEAD OF _ O.5OZ 0.25

0.5 CHORD J I //--0.5 CHORD

GAP /_ _I /_,/

o.osz_:._ .__/_,__.,-_=_.,

I- / PYLON RELEASES

_m (POSITION "_)
BOMB LOCATION FOR BEST _.

RELEASE CHARACTERISTICS
(POSITION l'v)

Figure 8
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CONSIDERATIONS AFFECTING HYDR0-SKI AIRPLANE DESIGN

By Kenneth L. Wadlin

Langley Aeronautical Laboratory

P

Several methods of basing and operating airplanes become possible

when the airplanes are equipped with kydro-skis. This paper, however,

will be concerned only wlth the fully water-based hydro-ski airplane

that starts at rest in the water and makes the complete take-off and

landing run on the water. An airplane of this type is shown in figure 1.

Before discussing the hydrodynamic performance of this type of airplane,

it may be well to consider how the application of hydro-skis affects

supersonic configurations. Such details as the location of the wing,

tail, air intakes, and jet exhaust must be examined with reference to

the peculiarities of water operation.

The airplane shown in figure 1 was derived from the D-558-II research

airplane. The location of the air intakes of the D-958-II on the under

side of the fuselage Is an example of how water operation influences the

aerodynamic configuration. This location Is obviously not suitable for

the water-based hydro-skl airplane since the intakes would be submerged

when the airplane is at rest and at low speeds. The air intakes were,

therefore, moved to the upper portion of the fuselage. Also, the jet

and rocket exhausts were inverted to keep the Jet exhaust as high as

possible. Tests have shown that air intakes in this position can be

kept clear of water by the use of small strips placed along the fuselage

center line below the intakes and extending forward to the nose.

For airplanes of this type, portions of the aerodynamic surfaces

may be wetted or even be under water at rest and at low speeds and be

subjected to hydrodynamic loads. The dynamic pressure of the _ater at

these low speeds, however, is of the same order as the dynamic pressure

of the alr at supersonic speeds. For example, the dynamic pressure of

the water at 45 fps is comparable to that encountered in the air at a

Mach number of 1.2. Hydro-skls normally raise most of the airplane clear

of the water at speeds under 45 i_s; therefore, airplanes that operate

at supersonic airspeeds will, because of aerodynamic requirements, nor-

really be designed to a strength of the order of that necessary for the

water loads encountered by aerodynamic surfaces.

In considering the take-off performance of the hydro-ski airplane,

water resistance Is generally one of the first problems to arise. A

typical water-resistance curve for a hydro-ski airplane is presented in

figure 2. As the water speed is increased, the resistance rises rapidly

to a peak value or "hump." This rapid rise occurs when the fuselage is

carrying most of the load. The hump occurs in the speed range where
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the skis are emerging from the submerged to the planing condition. As

the speed increases further, the hydrodynamic load is transferred entirely

to the skis and the resistance decreases because of inherent decreases in

load and angle of attack. Also included in this figure are the resistance

of the fuselage alone and of the planing skis alone when the fuselage and

the skis are operating under the same load conditions. These two com-

ponents are the primary sources of the hydrodynamic resistance. However,

for a hydro-ski airplane when the load is divided between the fuselage and

the skis, other factors, such as the hydrodynamic resistance of the sup-

porting struts and wetted portions of the wlng, spray, and interference

effects, influence the total hydrodynamic resistance. These factors

result in the over-all resistance differing from the dashed-line curves

Shown for the two principal components.

6

The resistance of the fuselage rises rapidly and indefinitely with

speed while the planing resistance of the skis decreases as the speed is

increased and becomes zero, of course, when the skis leave the water at

take-off. If the fuselage were not lifted clear of the water, the resist-

ance would continue to rise and the airplane would not take off. It is

necessary, therefore, for the skis to raise the fuselage clear of the

water before the take-off resistance of the airplane exceeds the availa-

ble thrust. The characteristics of the skis selected must be such that

the intersection of the separate resistance curves for the fuselage and

the skis occurs at an acceptable value of resistance.

The remainder of this paper summarizes hydrodynamic investigations

by the National Advisory Committee for Aeronautics of fuselages, hydro-

skis, and struts and hc_ the results of these investigations may be

used to assist in the design of hydro-ski airplanes. Investigations on

complete configurations are reported in references 1 to ll. The scope

of the available NACA information is shown in figures 3 and 4. Data

have been obtained for three streamline bodies of revolution having

fineness ratios of 6, 9, and 12, for a body having a fineness ratio of 9

but modified to increase the longitudinal curvature, and for a fuselage

having a fineness ratio of 9 with the aft end modified to accomodate a

jet exhaust (refs. 12 to 15).

At speeds where the skis are submerged_ the struts supporting the

skis contribute to the total resistance. The resistance of the struts

at preemergence speeds, which are generally below the inception of cavita-

tion, is estimated to be less than 5 percent of the total hydrodynamic

resistance. Surface-piercing struts at zero yaw have been investigated

at speeds up to 80 fps at several depths of immersion, with zero rake

and raked 30 ° forward and aft (ref. 16). NACA 66-series airfoil sec-

tions of 12 and 21 percent thickness were used.

The range of ski shapes covered is shown in figure &. The plan

forms for which planing data have been obtained include rectangular and
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triangular forms, and rectangular forms with triangular aft ends. The

triangular aft ends have been found to be of interest because of their

improved stability and lower landing loads as compared with rectangular

aft ends. The cross sections include curved-bottom shapes, flat and

V-bottom shapes with several dead-rise angles and flared and vertical

chines (refs. 17 to 22). Planing data have been obtained for a flat

ski with taxying wheels of several sizes and cross sections located at

a variety of positions with respect to the ski (refs. 23 and 24). In

addition, data have been obtained in the submerged condition for flat

plates having length-beam ratios of 8, 4, and 1.

From fuselage data (refs. 12 to 19), it is possible to determine

the maximum speed which a fuselage can attain before exceeding a speci-

fied value of resistance. Figure 9 presents such data as a plot of the

lift-resistance ratio of several fuselages against the Froude number.

The Froude number is the speed divided by the square root of the product

of the gravitational constant and the wetted length. It is usually the

governing parameter when, as in the case of the fuselage_ _ave-making

resistance is predominant. When plotted in this manner, the data for

each fuselage at various speeds and loads fall along a single curve.

From these curves the speed at which the fuselage must clear the water

to attain a given lift-resistance ratio can be estimated.

Since in the low-speed range the hydrodynamic lift supports nearly

all the weight of the airplane and since the resistance cannot exceed

the thrust available for take-off, the minimum allo_able lift-resistance

ratio is determined by the ratio of weight to thrust of the airplane.

The thrust of recent high-speed airplanes has been such that the required

lift-resistance ratio falls between 2.5 and 4. In this range of lift-

resistance ratios, fuselages in general would have to be lifted clear

of the water at a Froude number of approximately 1.3, which corresponds

to a speed of 49 fps if the fuselage is 40 feet long, or 69 fps if

80 feet long. A hydro-ski that will lift the fuselage from the water

at this speed can be selected by using data similar to that given in

figures 6 and 7-

Figure 6 presents the variation of hydrodynamic lift coefficient

with angle of attack (where the lift coefficient is based on the wetted

area) for a flat ski, a curved-bottom ski suitable for flush retraction

into a streamline fuselage, and for a curved ski with vertical chine

strips equal to l0 percent of the beam. The data shown are for a wetted

length-beam ratio of 4. These lift curves are nonlinear as for low-

aspect-ratio airfoils. The convex ski has lower lift at all angles of

attack than the flat-bottom ski. The addition of vertical chines to

the curved-bottom ski, however, increases the lift to values larger than

for the flat ski.



..... v w •

: : .: : .: : . ... :..":.-:

• • @•• •• ••• ••

4 CO_ID_TIAL

Figure 7 presents the variation of lift-resistance ratio with lift

coefficient for the same three skis. The flat-bottom ski and the convex-

bottom ski have approximately the same maximum lift-resistance ratio,

whereas the convex-bottom ski with the vertical chines has a lower maxi-

mum. These maximum lift-resistance ratios occur at low lift coefficients.

For ease of retraction and for limiting landing loads, hydro-skis are

preferably small and must, therefore, operate at high lift coefficients

in the critical region of ski emergence. At the higher lift coefficients,

the lift-resistance ratio of the curved-bottom ski is considerably lower

than that for the flat-bottom ski. The addition of the vertical chine

strips, however, increases the lift-resistance ratio to a value higher

than that of the flat-bottom ski. In the higher range of lift coeffi-

cients, the lift-resistance ratio is primarily determined bY the resist-

ance due to llft, and the ski with the greatest lift for a given angle

of attack will generally also have the highest lift-resistance ratio as

shown in figures 6 and 7.

The planing data were obtained at relatively low speeds in the

towing tanks and the question of their validity at the high speeds

involved in the take-off and landing of present hlgh-speed airplanes

is an obvious question. In view of this condition, the NACA has been

investigating methods of obtaining data at higher speeds. A small blow-

down water jet has been employed for an exploratory investigation. Tests

of small planing surfaces at speeds up to R00 fps have been made in this

jet. Figure 8 shows a schematic diagram of the apparatus. A high-

pressure air supply is used to force water from a tank through a nozzle.

The nozzle has an elliptical profile and produces a rectangular stream

3 inches wide and 3_ inch deep. The model is supported in the stream

by a strain-gage balance that measures lift, resistance, and trimming

moment which are recorded on an oscillograph simultaneously with the

pressure at the nozzle. A limited quantity of high-pressure air is

admitted to the water tank. As water is forced out of the tank, the

speed of the jet stream decreases because of the decreasing pressure of

the expanding air. In this way data are obtained at speeds from 200 fps

down to about 70 fps in a single run.

Figure 9 presents some of the lift data obtained with this apparatus

and corresponding data obtained at lower speeds in Langley tank no. 1.

The data in both cases are for a rectangular flat plate having a wetted

length-beam ratio of 4. An experimentally determined boundary-correction

factor has been applied to the data obtained in the jet, no correction

being required for the towing tank data. The data shown by the untagged

points were obtained in the jet; the tagged points are towing tank data.

The upsweep at low speeds is due to buoyancy effects which decrease

rapidly with speed and are not a consideration at the speeds in question.

Except for a slight upsweep at the highest speeds, which is believed to

be at least in part due to the boundary conditions imposed by the method

of testing, there is no appreciable variation in lift coefficient with

speed. The data that have been obtained to the present time are

J

O

i
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somewhat limited and have not as yet been completely analyzed; however,

indications are that there is no significant effect of speed on the lift

of prismatic planing surfaces, and the trends indicated by data obtained

at towing tank speeds can be expected to hold at the higher speeds encoun-

tered during landing and take-off of full-scale airplanes. For complex

surfaces, however, where negative pressures may be present, this effect
is not necessarily the case.

i

The considerations so far have been concerned with meeting the take-off

requirements; however, the required ski size is also influenced by the

landing-load requirements. The beam of the ski and the fllght-path angle

at a given landing speed are the primary factors influencing the landing

load on the ski. Figure l0 shows the theoretical variation of landing

load factor with ski beam for a 20,000 pound airplane equipped with twin

flat-bottom rectangular skis (ref. 25). The variation for flight-path

angles of 3° and 6° are presented. It can be seen that for a given

flight-path angle the load factor increases with increasing beam. There-

fore, the beam of the ski to meet a specified load factor is limited.

The trend of decreasing load factor with decreasing beam points out the

structural advantage of the hydro-ski with its relatively narrow beam

as compared with that of a typical flying-boat hull. Although figure lO
is limited to rectangular skis, similar theoretical information for skis

with triangular aft ends is also available in references 26 and 27.

Since triangular skis present smaller wetted beams during the initial

phases of a landing, they will have correspondingly lower loads as indi-
cated in figure 10.

If the size of ski required for take-off is not compatible with

the landing load requirements, other load-alleviatlng features such as

variable area or variable dead rise may be used. Shock absorbers may

also be used to reduce the load factor, and thereby allow more freedom

in the selection of ski proportions that will meet both take-off and

landing requirements.

_mJt ¸

The forces on the submerged hydro-ski or on its supportingstruts

do not generally have a major effect on the selection of the ski size.

Force data on struts and submerged skis are, however, useful in determining

design loads when the ski is submerged. They are also useful in calcu-

lations to assess the relative hydrodynamic performance of different

configurations. Submerged ski data indicate e basic stability problem

encountered in the transition from the submerged to the planing condi-

tion. This condition is illustrated in figure ll where the llft of a

flat rectangular ski is plotted against the distance of the leading edge

of the ski from the water surface measured in ski length, that is, z/Z

where Z is the ski length and z is the distance of the leading edge

from the water surface. For the submerged condition, z is taken as

positive and indicates the draft of the ski leading edge; for the planing

condition, z is negative and indicates the vertical distance that the

ski protrudes above the water.
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Figure ii shows that, for a fixed angle of attack, as the ski

approaches the water surface, the lift drops rapidly to a planing lift

that is only about one-half the lift obtained in the deeply submerged

condition. This decrease in lift will cause the ski to resubmerge when

it breaks the water surface and rise again when the flow is reestablished.

The ski will oscillate between planing and deep submergence. One obvi-

ous way to avoid such an oscillation is to increase the angle of attack

sufficiently to obtain planing lift equal to the submerged lift. Fortu-

nately, ski-airplane configurations that have been considered have usually

provided an inherent increase in ski angle of attack because of rotation

of the airplane about the aft end of the fuselage as the ski lifts itself

toward the water surface. Configurations that do not provide an inherent

increase in angle of attack with ski emergence may still merit considera-

tion if means for manual control of angle of attack by the pilot can be

provided.

o

Q

In summarizing, it may be stated that, although the many interrelated

variables involved preclude the complete design of a hydro-ski airplane

without tank tests of models of complete configurations, sufficient data

are available to make some first approximations that will assist in pre-

llminary design and to establish trends that minimize the number of tests

required to arrive at a final design.

i

7



D

t

@@

i ""=. .-. .-. ... ... .-- .-. • .......
.. . ...". -. -.'.". -'" ..

CONFIDENTIAL 7

REFERENCES

i. Dawson, John R., and Wadlin, Kenneth L. : Preliminary Tank Tests of

NACA H_dro-Skis for High-Speed Airplanes. NACA RM L7104, 1947.

2. Wadlin, Kenneth L., and Ramsen, John A. : Tank Spray Tests of a Jet-

Powered Model Fitted With NACA Hydro-Skis. NACA RM L8B18, 1948.

3- Ramsen, John A. : The Effect of Rear Chine Strips on the Take-Off

Characteristics of a High-Speed Airplane Fitted With NACA Hydro-
Skis. NACA HM LgB10a, 1949.

4. Fisher, Lloyd J. : Model Ditching Investigations of Three Airplanes

Equipped With Hydro-Skls. NACA RM L9K25, 1950.

5. Wadlin, Kenneth L., and Ramsen, John A. : Tank Investigation of the

Grunmmm JRF-5 Airplane Fitted With Hydro-Skis Suitable for Opera-

tion on Water, Snow, and Ice. NACA RM LgK29, 1_50.

6. Ramsen, John A., and Gray, George R. : Tank Investigation of the

Grumman JRF-5 Airplane With a Single Eydro-Ski and an Extended

Afterbody. NACA I_4 LSiE21, 19_l.

7- McKann, Robert E., Coffee, Claude W., and Arabian, Donald D. : Hydro-

dynsanic Investigation of a i -Scale Model of the Consolidated
13

Vultee Skate 7 Seaplane Equipped With Twin Hydro-Skis - TED No.

NACA DE 342. NACA HM SLSIFOTa, Bur. Aero., 1951.

8. Hoffman, Edward L., and Fisher, Lloyd J.: Yawed-Landing Investiga-

tion of a Model of the Convair Y2-2 Airplane - TED No. NACA DE 363.

NACARM SLSIH17a, Bur. Aero., 1951.

9- Ramsen, John A., Wadlin, Kenneth L., and Gray, George R.: Tank

Investigation of the Edo Model 1_2 _ydro-Ski Research Airplane.

NACARMSLSlI24, U.S. Air Force, 1951.

I0. Ramsen, John A., and Gray, George R.: Tank Investigation of the

Grumman JHF-5 Airplane Equipped With TwinHydro-Skis - TED No.

NACA DE 357- NACAP24SL52D17, Bur. Aero., 1952.

ii. Fisher, Lloyd J., and Hoffman, Edward L.: A Brief Hydrodynamic

Investigation of a 1/24-Scale Model of the DR-V7 Seaplane - TED
No. NACA DE 353. NACARM L53FO4, 1993.



• _ •• @ @0 O •

• ...: : : :'..

uU Q • • ••• ••

o... .. :.:
• O@• • • • • •

0• • • 0•• O• DO@ O•

CONFIDENTIAL •ll

4

,D

12. Weinflash_ Bernard: The Effect of Air Jets Simulating Chines or

Multiple Steps on the Hydrodynamic Characteristics of a Stream-

line Fuselage. NACA RM L8J21_ 1949.

13. Weinflash_ Bernard, Chrlstopher3 Kenneth W., and Shuford,

Charles L._ Jr.: The Effect of Air-Jet and Strip Modifications

on the Hydrodynamic Characteristics of the Streamline Fuselage

of a Transonic Airplane. NACA RML9D20, 1949.

14. Weinflash, Bernard3 Shuford, Charles L., Jr., and Christopher_

Kenneth W.: Hydrodynamic Force Characteristics of a Streamline

Fuselage Modified by Either Breaker Strips or Rows of Air Jets

Simulating Chines. NACA RM L9LRla, 1950.

15. Weinflash_ Bernard_ and Shuford, Charles L., Jr.: Investigation

of the Hydrodynamic Stability and Resistance of Two Streamline

Fuselages. NACARML52_Bll, 1952.

16. Coffee, Claude W., Jr., and McKann_ Robert E.: Hydrodynamic Drag

of 12- and 21-Percent-Thick Surface-Piercing Struts. (Prospective

NACA paper.)

17. Wadlin, Kenneth L., and McGehee, John R.: Planing Characteristics

of Three Surfaces Representative of Hydro-Ski Forms. NACA

L9co3, 1949.

18. Wadlin, Kenneth L., and McGehee, John R.: Planing Characteristics

of Six Surfaces Representative of Hydro-Skl Forms. NACA

RML9L20, 1950.

4

19. Kapryan, Walter J., and Weinstein_ Irving: The Planing Character-

istics of a Surface Having a Basic Angle of Dead Rise of 20 ° and

Horizontal Chine Flare. NACATN 2804, 1952.

20. Blanchard, Ulysse J.: The Planing Characteristics of a Surface

Having a Basic Angle of Dead Rise of 40 ° and Horizontal Chine

Flare. NACATN 2842, 1952.

21. Chambliss, Derrill B., and Boyd George M., Jr.: The Planing Char-

acteristics of Two V-Shaped Prismatic Surfaces Having Angles of

Dead Rise of 20 ° and 40 ° . NACA TN 2876, 1953.

22. Weinstein, Irving, and Kapryan, Walter J.: The High-Speed Planing

Characteristics of a Rectangular Flat Plate Over a Wide Range of

Trim and Wetted Length. NACA TN2981, 1953.

23. Land, Norman S._ and Fontana, Rudolph E.: Preliminary Tank Tests

of Some Hydro-SkimWheel Combinations in the Planing Condition.

NACA RM L52HIS, 1952.



w

• .'..'"-""i_""X"""° ° °• • • • QQ @@ • • • •
• ••@ • • • • @

• •• ••• • • •• •• • • ••@ ••

CONFIDENTIAL 9

24. Land, Norman S., and Pelz, Charles A.: Force Characteristics in

the Submerged and Planing Condition of a 1-Scale Model of a
5.78

Hydro-Ski-Wheel Combination for the Grumman JRF- 5 Airplane. NACA
P_ LSaB28, 1952.

25. Schnitzer, Emanuel: Theory and Procedure for Determining Loads and

Motions in Chine-Immersed Hydrodynamic Impacts of Prismatic Bodies.
NACA TN 2813, 1992.

26. Smiley, Robert F.: The Application of Planing Characteristics to

the Calculation of the Water-LaudingLoads and Motions of Sea-

planes of Arbitrary Constant Cross Section. NACA TN 2814, 1952.

27. Miller, Robert W.: Water-Landing Investigation of a Flat-Bottom

V-Step Model and Comparison With a Theory Incorporating Planing
Data. NACA TN 2932, 1953.



@

o . .: , .: : ," .. : : : .°.... .°
%: : : • .: : :• . : : "o. "°• o.. : • •

10 " " °.- .o ° °
t_FI_ENTIAL

4

Q

o

HYDRO-SKI AIRPLANE CONFIGURATION
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S

Figure 1

HYDRODYNAMIC RESISTANCE OF HYDRO-SKI AIRPLANE
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SOME DESIGN CONSIDERATIONS PERTINENT TO THE ROUGH-AIR

BEHAVIOR OF AIRPLANES AT LOW ALTITUDE

By Philip Donely and Clarence L. Gillis

Langley Aeronautical Laboratory

INTRODUCTION

W

There are certain types of military operations that will require

flights of 1 or 2 hours duration at altitudes of 1,O00 feet or less at

high subsonic speeds, speeds that must be maintained. Rough air is

encountered about 50 to 40 percent of the time at low altitudes, and

the National Advisory Committee for Aeronautics in a study found that

turbulence is of importance not only for structural strength but also

in regard to the precision of flight and also in regard to the crew's

efficiency and well-being. The study indicated that even moderately

rough air would be troublesome and the problems of flight precision and

crew reactions can be considered as new problems that may modify the

design of the airplane.

It is the purpose of this discussion to examine some of the design

variables that have a bearing on the problem. After treating the ques-

tion of what happens to an airplane and the conditions that appear

desirable, the direct effects of turbulence will be considered followed

by a discussion of the influence of some variables affecting the motions

of the airplane.

SYMBOLS

W

V

U

dCL/d_

A

S

P

weight, lb

forward speed, fps

gust velocity, fps

slope of lift curve, per radian

sweep angle, deg

wing area, sq ft

air density, slugs/cu ft
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An

C I

A

Ae

_g

f

¢i

L

TI/2

CI/IO

P

dCm/dCL

acceleration increment_ g

wing mean aerodynamic chord, ft

wing mean geometric chord 3 ft

aspect ratio

pitch-angle increment

mass ratio, 2W/p gd_

!

frequency, cps

frequency, radians/ft

power density, (ft/sec) 2 ft

scale of turbulence, ft

time to damp to half-amplitude, sec

cycles to damp to 1/10 amplitude

period, sec

slope of pitching-moment curve

RESULTS AND DISCUSSION

G

t

Airplane reactions of concern as to the precision of flight and

crew's reactions are illustrated in figure i by these short samples of

acceleration and direction records from flight at a Mach number of only

0.60 at an altitude of 1,500 feet. Although this flight is in moderate

to severe rough air, the acceleration record indicates that the crew

was being continually jolted. The heading record is of interest in that

while the crew was being jolted, the airplane developed a yawing oscilla-

tion with a period of about 3 seconds with an amplitude of ±1.3°_ an

oscillation not present in smooth air. This amplitude would correspond

to a miss distance of 22 feet at a l,O00-foot range or 22 mils. Similar

behavior has been noted for other airplanes, as for example the X-5 with

the wings swept 59 ° .

The feelings of the crew will depend on both the acceleration

intensity and the frequency. Figure 2 is another example of the jolting

that can be experienced. This acceleration record is a 12-second section

from a 2-minute flight (21 miles) at 1,500_eet with an F-86 airplane
r
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flying at M _ 0.85. The complete run shows accelerations up to l.Sg

while this particular section shows small rapid oscillations at about

3 or 4 per second with peaks of about O.2g. While the pilot had made

many runs at Mach numbers of 0.4 and 0.8, he noted that this run of

2 minutes was about his limit. He felt that, at this speed and alti-

tude, the degree-of concentration and effort required to control the

airplane was so great as to jeopardize the safety of the airplane if

such flights were continued.

The decision as to how much the reactions of the airplane should

be reduced is a difficult one since it is subjective and little factual

information is available. From the short runs made with the F-86 air-

plane, it appears that moderate rough air results in a ride that is near

the safety limit. For flights of 1 or 2 hours in rough air, a sub-

stantial reduction in the acceleration level would appear to be required;

perhaps, a reduction to about 30 percent of the level shown. McFarland

in his book on human factors in air transport design (see ref. l) indi-

cates that the work of Reihe and Meister showed that although accelerations

of ±0.2g at 3 to 5 cps would be dangerous, a level of 0.04g at these

frequencies would be merely disagreeable. This is a reduction to 20 per-
cent of the level shown on the F-86 records and assumes that a disagree-

able ride would be tolerable. In regard to airplane motions, a devia-

tion of 5 mils is considered satisfactory; thus, the motions of the B-45

airplane at 22 mils would have to be decreased to about 25 percent of

that value to be useful under the conditions specified for this mission.

Since all considerations indicate a reduction to about 20 or 30 percent,

the acceleration record for the F-86 airplane will be used as a standard,

and a reduction by a factor 3 in acceleration or to 30 percent will be

the criterion of satisfactory behavior for moderately rough air used

herein.

The factors that are pertinent for obtaining the desired reduction

are indicated in the following relationship:

pw 0v2dcz! zm _+• -- Ae (i)
2 w/s 2 w/s

The acceleration can be considered as composed of two effects: the direct

effect of the gust consisting of such quantities as airspeed, air density,

lift-curve slope, and wing loading which determine the magnitude of the

disturbance of the airplane and the indirect effects due tothe resulting

airplane motions which are represented by the pitch angle Ae. Since the

speed, air density, and gust velocity are specified in this problem, the

major elements at the disposal of the designer are changes in lift-curve

slope, wing loading, and the disturbed airplane motions.
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What can be accomplished by working on the lift-curve slope and

wing loading will be taken up first. The remainder of the discussion

will be concerned with the second term representing the influence of

airplane motion. The indirect effects of various factors such as, sweep,

static margin, lack of a tail surface, and artificial damping will be

touched on.

m

o

Direct Effects

Three methods of obtaining a low lift-curve slope are to reduce the

aspect ratio, sweep the wing, or introduce flexibility particularly for a

sweptback wing. The effect of aspect ratio and sweep are used in combi-

nation many times. Gust-tunnel investigations, references 2 and 3, have

indicated the effectiveness of both quantities and figure 3 shows that

these investigations are borne out by flight experience. Figure 3 indi-

cates that, if an unswept-wing airplane encountered a given value of

acceleration, then the ordinate represents the acceleration that a swept-

wing airplane would experience in the same rough air with equal frequency.

To obtain the line of circle test points labeled 35 ° , an F-80 and an F-86

airplane were flown side by side in the same rough air at a Mach number

of about 0.6. In this case, the F-80 with about the same wing loading

and aspect ratio as the F-86 was used as the reference, and the accelera-

tion increments for equal frequency of occurrence were plotted. The

square test points labeled 59 ° were obtained from go-and-return flights

of the X-5 airplane in rough air at a Mach number of about 0.7. Alter-

nate runs with the wings swept 20 ° and 59 ° were made. The X-5 data for

20 ° sweep corrected slightly to 0° were the reference conditions to

obtain the square test points. The solid lines represent the relation

between accelerations for the airplanes if the lift-curve slope is

assumed to be the only factor. As can be noted, the agreement is fairly

good.

Figure 3 indicates that reducing the lift-curve slope through the

use of sweep is quite effective. Since the F-86 acceleration record is

the basis for the reduction desired, it can be seen that, if the wings were

swept to 60° by rotation, the acceleration could be reduced from say 0.6g

to about 0.4g, 30 percent or about half the desired reduction. If this

same 30-percent reduction were to be obtained by reducing aspect ratio,

the aspect ratio would have to be decreased say from 6.0 to 2.0. Unless

extreme values of sweep or aspect ratio are utilized, it does not appear

practical to obtain the reduction to 30 percent in this way. As a matter

of fact, the relation given indicates that for aspect ratio below about

1.5 the effect of sweep is not significant.

Flexibility utilizing washout under load is the third way of

obtaining low lift-curve slopes. About the only experimental evidence

is contained in reference 4. This gust-tunnel investigation of a 45 °

| !
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sweptback wing, hinged at the root, showed that a 21-percent reduction

in acceleration could be obtained if the airplane did not pitch. The

wing deflection corresponded to 20 inches per g at the tip of a wing

with a span of i00 feet. Unfortunately these tests also indicated that

adverse pitch due to forward movement of the aerodynamic center as the

wings deflected canceled half the gain. It is apparent, therefore,

that while the introduction of flexibility can be of benefit the net

gain may depend on the induced airplane motions to a high degree and

these motions may require careful consideration. So far no full-scale

experimental results are available to assess this phase of the problem.

The effect of wing loading on accelerations due to a gust are well-

known, reference 2_ but for convenience are shown in figure 4 for wings

of various sweep. Simple calculations for a single gust encounter have

been made for a 20-fps gust (about the maximum experienced by the F-86)

and a flight speed of 1,000 fps. Values of the acceleration increment

for wing loadings from 50 to 300 ib/sq ft are shown for sweeps of 0°,

50 ° , and 60 ° . A delta wing of 60 ° would follow the 60 ° line quite

closely. The curves indicate that for the wings shown, the wing loading

for an unswept-wing airplane would have to be increased from 50 to about

200 !b/sq ft to reduce the acceleration to 30 percent. If a shift is

made from an unswept wing to one swept 60 ° , the wing loading would have

to be increased to only i00 ib/sq ft to achieve the reduction.

Indirect Effects

What can be done by modifying the second term of equation (i),

which represents in principle the effect of airplane motion, is not so

obvious. The subject of airplane motions is complex but the magnitude

of changes in acceleration have been studied since the equation indi-

cates this term may increase or decrease the acceleration. Since con-

tinuous rough air is being dealt with, generalized harmonic analysis for

random disturbances, references 5 and 6, has been utilized in the sub-

sequent studies.

The remainder of the discussion deals with possible benefits of

modifying the stability of stable well-damped airplanes, the influence

of adverse moments due to sweep on the benefits just indicated, compari-

son of tailed and tailless configurations, and the use of artificial

damping for poorly damped motions. Although it was found that most

factors were not significant in the problemunder consideration, the

study of configuration and artificial damping indicated that some
adverse effects could be eliminated or reduced.

Input spectrum.- For the analyses of the effects of modifying the

stability of well-damped airplanes and the effect of adverse moments due

to sweep, the input spectrum shown in figure 5 was used. The curve of
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power density ¢i as a function of frequency is based primarily on air-

speed fluctuation data obtained on an L-5 airplane operating in moderately

rough air at an altitude of 400 feet. These data which are in agreement

with other samples were used to arrive at a fitted curve for isotropic

turbulence. The curve shown in figure 5 is for a scale length L of

300 feet.

For the study of tailed and tailless configurations and artificial

damping, spectra were for a lower level of turbulence. Since the basic

investigation involved experimental studies with rocket models, it was

more convenient to utilize the associated analyses. Since in this study

relative effects on models are being assessed, the actual intensity is

not significant.

Unswept-wing airplanes.- Figure 6 and table I give the characteris-

tics of the airplane family used to study changes in dynamic stability

obtained by varying the moment-curve slope dCm/dC L and the mass ratio

_g. The moment-curve slope dCm/dC L was varied from -0.03 to -0.08 and

the mass ratio was varied from i0 to 200. The airplanes had a weight of

i00,000 pounds and were geometrically similar with a flight speed of

1,118 fps. Figure 6 indicates that the heavily loaded airplane had a

short period from 5.6 to 3.1 seconds, damping to half-amplitude in

0.9 seconds, whereas the lightly loaded airplane has an infinite short

period and is heavily damped. Some of these airplanes represent extreme

variations.

The response transforms were obtained by computing the step function

according to methods of reference 7 and then transforming the results to

the frequency plane. Although flight at high Mach number is assumed_

two-dimensional incompressible unsteady-lift functions and low-speed lift-

curve slopes were used. This was done since the available evidence,

reference 8 and other studies, is very inconclusive as to the proper

functions for gust calculations at high Mach number. Also, the airplanes

were assumed to be rigid; therefore, structural vibrations are not

included in the response calculations.

The response transforms were then multiplied by the input spectrum

of figure 5 to obtain output spectra. As noted in reference 5, the area

under the output spectrum is the mean square acceleration and the square

root of this quantity, the root-mean-square acceleration increment, will

be used as a measure of the airplane behavior.

The results are given in figure 7 as a function of wing loading with

dCm/dC L as the parametric variable. For comparison, the root-mean-

square acceleration increment for the F-86 record of which figure 2 is a

portion was 0.21 so the criterion of reduction used herein would imply

that a satisfactory value would be about 0.07. As previously noted the

direct effect of wing loading seems to be the dominant factor and the
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influence of stability is small and unimportant for the problem at hand.

It might be noted that at low wing loadings the effect of stability was

negligible, whereas at high wing loadings a reduction in stability tends

to reduce the accelerations slightly. Other studies have shown similar

results; but, it has been found that, depending on the mass ratio and

geometry, the effect of increased stability is sometimes favorable as
indicated in reference 9-

Swept-wing airplanes.- Since the root section of a swept wing

penetrates a gust before the wing tips, an adverse pitching moment is

produced similar to that mentioned earlier for the flexible sweptback

wing. An analysis was made, therefore, to see if this factor might

cancel the direct benefits obtained through reducing the lift-curve

slope. The airplane characteristics are given in figure 8 and table II.

As in the previous case the weight -_as kept at lO0,O00 pounds, the mass

ratio was varied from lO to 200, and the sweep was varied from 0° to

60 ° with the aspect ratio kept unchanged. Strip theory was used to

modify the unsteady-lift functions to account for sweep. The speed was

the same as for the unswept-wing family. The airplanes were assumed to

be neutrally stable (aperiodic), and, as indicated, the time to damp to

half-amplitude varied from 0.12 second to about 0.90 second as the wing

loading increased.

In figure 9, the root-mean-square acceleration increment is again

shown as a function of wing loading. The lowest curve, indicated by the

diamond symbols, indicates the direct effect of lift-curve slope. This

curve was obtained by multiplying the root-mean-square acceleration

for 0 ° sweep by the ratio of lift-curve slopes for the 60 ° and 0° sweep

cases. The difference between this curve and the 60 ° curve with triangle

symbols is used as a measure of the influence of pitch. At low wing

loadings, the three curves coincide indicating that the pitch had

effectively canceled the effect of reduced lift-curve slope. As the

wing loading increases, the influence of pitch is decreased so that most

of the benefit of sweep is realized. At a wing loading of 160 lb/sq ft,

the adverse pitch increases the acceleration 14 percent. Such adverse

effects indicate increased angular motions of the airplane that might

require modification for gunnery or bombing considerations.

Airplane configuration and artificial da_ing.- So far all configura-

tions had well-damped motions; but, of considerable concern, are low-

damped airplane motions such as illustrated by the heading record shown

in figure 1. A configuration that may well have low damping in pitch is

one without a horizontal tail. For such configurations, the motions of

the airplanes are significant in their own right and can also lead to

increased accelerations that cancel any benefits of increased wing

loading or reduced lift-curve slope as for the cases just discussed.
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The NACAhas initiated exploratory studies of the problem by means
of rocket models and analysis. The results that bear on the specific
mission will now be discussed preceded by a brief comparison of experi-
ment and calculation to provide a measure of the validity of this and
the preceding analyses.

Figure i0 gives the configurations tested and their dyns_ic char-
acteristics. The models consisted of the sameforebody and wing but,
as indicated by the dashed lines, in one case the body was extended and
a horizontal tail added. The inset figures for period and cycles to
dampto i/i0 amplitude indicate that both models were very stable but
the dampingwas poor when comparedwith the criterion of one cycle to
dampto i/lOamplitude.

The output spectra with the corresponding calculated curves are
shown in figure ii for M _ 0.81 while the corresponding values of root-
mean-square acceleration increment are given in figure 12. The dis-
crepancy between calculation and experiment represents the combined
effects of errors in calculating the motion and accounting for the
temporal character of the input spectra during a rocket flight. The
spectra shownrepresent about the greatest discrepancy found and the
agreement is considered fairly good. Figure 12 gives an over-all
picture of the results and indicates that, considering all the experi-
mental samples, the tailless model gave excellent results (owing in
part to the fact that stability derivatives were available from tests
of similar models) and the calculated values were a little low for the
tailed model.

For the purpose of t_nis paper, the experiments were not used
directly but analyses with the two configurations adjusted to give the
samenatural frequency were made. In addition to the calculation for
the configurations, the effect of adding rate damping to both models
was also analyzed. The damping systems assumedcontrol deflections
proportional to angular velocity and the black areas on the models

(fig. 13(b)) indicate that a trailing-edge flap was used for the tailless

model and an all-moving tail for the tailed model. For the tailless

model the flap had a chord of 0.25c and the system would respond to

14 cps. The frequency response of the control system for the tailed

model was the same.

The calculated output spectra, in figure 15, show by comparing the

solid curves that adding a tail reduced the root-mean-square accelera-

tion increment 20 percent. Although this gain is significant it is not as

great as might be expected and does not rule out tailless configurations.

Comparison of the dashed and solid curves, figure 13, indicates that the

use of artificial damping leads to very significant gains. With damping,

the output spectra are very flat and the root-mean-square acceleration

increments were reduced about 50 percent.
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The effect of added damping is shown in a different form in fig-

ure 14 where the calculated frequency distributions are plotted for the

four cases as the number of peaks per mile as a function of the accelera-

tion increment. Inspection of figure 14 indicates that the added damping

has increased the number of small acceleration peaks for both models by

increasing the response somewhat at high frequencies. At high accelera-

tlon_ the benefit of the tail and of the use of artificial damping show

up quite clearly, with the damped tailed model having the lowest acceler-

ation at lO per mile and the damped tailless model next. It is obvious

from these results that, for low-damped motions, the use of artificial

damping can reduce the accelerations due to airplane motion so that the

direct benefits can be utilized if high wing loading and reduced lift-

curve slope lead to such motions. It might be noted that the large gains

are made only for poorly damped configurations as tests of a rate auto-

pilot in a subsonic stable airplane indicated a reduction of only 7 per-

cent, reference lO.

CONCLUDING R_4ARKS

In conclusion the discussion has indicated that if a reduction in

airplane response in rough air by a factor of 3 is required for high-

subsonic-speed low-altitude flight :

(a) Increasing the wing loading and reducing the lift-curve slope

through sweep, reduced aspect ratio, or increased flexibility will be

the major factors.

(b) The effect of moderate changes in stability for airplanes with

satisfactory characteristics does not appear significant. For configura-

tions using swept wings and those involving low damping of airplane

motions, adverse angular displacements may cancel the benefits of other

changes but the adverse effects can be significantly reduced by

artificial damping.

It might be noted in closing that solution of the gust problem for

this mission may introduce other serious problems in regard to handling

qualities or increased landing and take-off speeds.
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FLIGHT TEST RESULTS ON SWEPT-WING AIRPLANES
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EFFECT OF STABILITY ON GUST ACGELERATIONS
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ADDITIONAL INVESTIGATION OF THE HANDLING QUALITIES

OF AIRPLANES AT HIGH SPEEDS

By A. Scott Crossfield, Hubert M. Drake, Jack Fischel,
and Joseph A. Walker

NACA High-Speed Flight Research Station

In a paper by W. C. Williams and A. S. Crossfield (ref. 1), some

characteristics of research and tactical airplanes were compared with

the handling-qualities requirements. An evaluation of these charac-

teristics was made with regard to danger, limits to usefulness of the

airplanes, and possible needs for review of the handling-qualities

requirements. A major effort to investigate these characteristics

during the past year and a half has served to clarify some of the

problems and has brought to light additional problems. This paper

is concerned with those characteristics which appear to be of major

importance that were investigated with the research airplanes. The

placement similar to most current and near-future tactical airplanes.

No direct comparison with handling-qualities requirements is attempted

because this paper is restricted to problems which are all in flagrant

violation of the requirements. The troublesome area of major impor-

tance is still the transonic region because airplanes are flying and

being manufactured to fly in this area. It is here that the most

serious problems concerning buffeting, stability and trim changes,

drag changes, and dynamic stability are encountered.

In reference 1 the accelerated flight pitch-up characteristics of

the D-558-II, the X-4, and the F-86A are described and evaluated. A

number of fixes which wind-tunnel investigations indicated might be

promising have since been tried on the D-558-II. Figure 1 shows the

types _e e_-_=_ _++_+_ and +_ _°_°_+=_+_ o_°_÷_- .... _ _

attack variations for Mach numbers of 0.7 and 0.87. These fixes apply

only to the wing and none of these changes resulted in tolerable behav-

ior; however, some reduction in divergence rates was noted with full

slats and chord-extensions below a Mach number of 0.80. For a Mach

number of 0.7 with slats fully extended, D and E, the airplane retrimmed

after a typical pitch. The chord-extensions G showed similar trends

but buffeting intensities reached extreme values of 2g total amplitude.

None of the modifications provided measurable improvement between Mach

numbers of 0.8 and 0.95, the upper limit of the tests, and all were

characterized by an abrupt change in stability at the pitch-up. It

has been concluded that with the tail configuration of the D-558-II

(ht = 69 percent _) a real cure of the pitch-up is not feasible.
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A word of caution regarding the interpretation of these data is in
order. Above the abrupt change in stability there are unbalanced moments
and pitching-acceleration contributions, and, therefore_ caution should
be taken in static evaluation of data at angles of attack above the change.
A stable slope above the stability changemay or may not represent a severe
pitch-up. All of these cases are pitch-ups with severity roughly in propor-
tion to the abruptness of the stability change. If pitch-ups are permitted
to develop without corrective control, violent rolling often results.

Although the stability results are somewhatnegative, these investi-
gations have had considerable value in determining how to interpret flight
and wind-tunnel data. In earlier investigations the problem was not clearly
understood and, therefore, fixes selected on the basis of wind-tunnel evalu-
ation were tried that would not be tried now. Representation on the basis
of CM against CL is obscured by the nonlinear character of the higher
portion of the lift-curve slope which changes with the fixes. In addition,
these investigations brought to light that the pitch-up maneuver is of
dynamic character. The type of maneuverused, that is_ a slow continuing
rate turn at constant speed, is similar to a tactical maneuver, except
that the rate is low enough to permit static-data evaluation before pitch-
up. The pilot approaches the stability change with a finite amount of
pitching momentumwhich is, however_ usually less than that in a typical
tactical maneuver. Compiled tactical information indicates that military
pilots are going to use all of the lift capabilities they can handle in
order to line up with the target_ regardless of buffeting. 0nly test
pilots have the fortunate circumstance of being able to concentrate on
approaching difficulties. m

The stability boundaries as influenced by normal-force coefficient

and Mach number for the D-558-II, the X-4, and the F-86A were published

in reference i. In figure 2 the D-558-II boundary has been extended

into the supersonic region. The character of the pitch-up encountered

below a Mach number of 1.3 is similar to the transonic case with the

added difficulty that the transonic troublesome area is traversed before

recovery can be made at subsonic speeds. At a Mach number of about 1.6,

the rates of pitch or severity tended to diminish to much more control-

lable values. It is suspected that the pitch-up character begins to

change at about 1.3 where the Mach cone angle approaches the leading-

edge sweep angle.

Also shown in figure 2 are the stability boundaries for the X-5

with 60 ° sweep and the X_-92A. In addition, the limit of CNA reached in

tests is shown for these airplanes as well as for the X-3. The swept-

and delta-wing airplanes exhibit similar trends of decreasing CNA for

pitch-up with speed. The delta-wingXF-92A exhibited the lowest boundary.

The boundaries of the X-5 at 45 ° and 20 ° sweep have not been fully
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explored at the present time but the indications are that the boundaries

for these sweep angles are similar to those for the 60 ° case shown. The

large amount of unusable normal-force capability above the boundaries
should be noted.

Flight-test results on the relatively thick straight-winged X-1

envelope have been published previously and virtually blanket figure 2

except at extremely high speeds. No static longitudinal difficulties

were encountered. The X-3 with a thin low-aspect-ratio straight wing is

being demonstrated by the Douglas Aircraft Company and thus far has been

maneuvered to normal-force coefficients shown without static longitudinal

difficulty. Notice that a normal-force coefficient of 0.6 has been reached

at a Mach number of 0.93.

Approaching and penetrating the region of stability change with the

XF-92A leaves the pilot with two distinct impressions. The first is the

extreme drag due to lift which sometimes requires a loss of lO,000 feet

in an effort to maintain speed. The other impression is a periodic

behavior indicated in figure 5 which is a time history of a wind-up turn

at constant Mach number to the point of instability. Instability occurred

at ±_ seconds and was followed by a longitudinal oscillation which is

felt to be the result of static divergence between two stable regions.

Little rolling and yawing occurs. Notice that the mean control position

during the oscillation is about that required to penetrate the unstable

regions. In a similar maneuver when the control was reversed rapidly,

the acceleration went from 7!g at the peak of the pitch-up to -o_g.

This 12g change was in 1/2 second and resulted in structural damage. An

additional note may be added here with respect to fixes.

Fences were added to the XF-92A at 60 percent of the semispan from

the leading edge to the flap hinge line. The fence height was equal to

the wing maximum thickness at this span station. The fences, as a first
_+_m_te, were selected from tests _ a _ _-_--......... _ airplane having a

thinner airfoil. Below a Mach number of 0.70, the stability boundary

was raised to nearly maximum normal-force coefficient where pitching

rates were encountered similar to those before but with very small
increases in lift. Of interest is a maneuver at a Mach number of 0.6

and below where the airplane retrimmed at 40 ° angle of attack with full

elevon deflection. It descended nearly vertically with full power losing
speed.

Above a Mach number of 0.80, no apparent improvement resulted from

the fences during the initial divergence. However, the previously

described oscillation appeared in a more erratic form with less amplitude.

Another type of pitch-up requires some discussion of trim and apparent
stability variations with Mach num_
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Transonic longitudinal trim characteristics are discussed in refer-

ence i and those of the X-5 and XF-92A have been determined since that

time. These two airplanes exhibit the usual trim variations with speed

but to a lesser extent than the airplanes having less sweep.

The longitudinal control effectiveness dSe/dCNA of these airplanes

follows the usual pattern. The apparent reduction in elevator power for

the XF-92A results, however, primarily from increased airplane stability

from Mach numbers of 0.85 to 0.92. Above a Mach number of 0.92, a loss in

flap effectiveness becomes apparent.

°

The second type of _tatic instability is experienced when decelerating

through this speed range where there are changes in trim and apparent sta-

bility. This condition occurs with all airplane configurations. The

severity of this type of pitch-up is aggravated in low-aspect-ratio con-

figurations where drag due to lift is high.

Figure 4 shows an example of an XF-92A maneuver during which, in a

dive at a Mach number of 0.95, the pilot pulled up to the instability

boundary as evidenced at 8 seconds. Then the speed was permitted to

decrease, and from 14 to 19_I seconds the control was fixed. However, the

acceleration continued to increase because of trim change and decreased

the apparent stability until the instability boundary was reentered at

about i_ 2 seconds at a Mach number of 0.85. Notice the high response to

corrective control. During another similar maneuver at lower altitude

and lower CNA , acceleration increased from 4g to 7g in 4 seconds with

no control motion.

o

The pilot's attitude toward pitch-up is strongly influenced by the

stick-free stability of the airplane. Stick-free instability contributes

to the violence of the pitch-up. The D-558-II was made stick-free stable

for one speed for the slats-out case and the severity of the pitch-up was

only slightly alleviated. Provisions of more tail power for control of

pitch-up, as has been proposed, in turn make it much easier to get into

the unstable region at transonic speeds, and hence the difficulty is not

materially improved.

The pilot's attitude is also strongly influenced by pitching rates.

The current B-47A has a static instability as shown in figure 5 and is

compared with the D-558-II; however, since divergence rates were of the

order of one-fifth or less than those of fighter-weight airplanes, the

pilot felt it was controllable to a large degree. Pitching rates of the

B-47A are well below 0.i radian/sec, whereas the research airplanes expe-

rience rates from above 0.3 to nearly i radian/sec.
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A further influence on pilot's attitude toward the pitch is colored

by the additional difficulty he may experience after entering the changing

stability region. The amount of additio%ml g acquired before control of

the airplane is regained, deteriorating lateral directional stability at

high lift, and the accelerated spinning characteristics, all of which

incidentally arise from the same source, tend to cause the pilot to dis-

like approaching the unstable region, especially If he is thinking about
it.

Now, assume that the pilot has traversed the transonic region through

the narrow corridor at low llft without much difficulty and he attempts a

maneuver at supersonic speed. Figure 6 illustrates the change in CNA

with Mach number of the D-_58-II performing a turn at _0,O00 feet. The

turn is initiated with adequate power for a Mach number of 1.1_ and, after

only 20 ° of turn, the airplane enters the unstable, high-buffeting, high-

drag, low-control region. Some of the most violent and uncontrollable

maneuvers recorded have been made when the transonic region was entered

from the high-speed side. Recognize that, at 60,000 feet and above,

CNA for 1 g flight is deep in the troublesome area.

At the other end of the speed scale the landing problems seem to

reflect the transonic problems of basic wing plan forms. However, these

low-speed longitudinal troubles respond nicely to various fixes like fences

and slats. Also, the XF-92A with 30 lb/sq ft wing loading lands above

140 mph, which is about the speed for landing other research airplanes of

twice or more wing loading. However, this speed falls at about l_ percent

above the speed for maximum lift with full elevon deflection, about mini-

mum wave-off speed and close to minimum ground clearance speed. There is,

however, a landing difficulty arising from unique lateral-directlonal char-

acteristics. Four pilots have described what appears to them to be direc-

tional instability while landing. The airplane literally flies sideways.

This condition has been observed by the pilots and by ground and air

observers. No explanation of this behavior has been determined up to the

present time and investigations are continuing. Also, the high dihedral

of the XF-92A requires careful coordination of approach turns because it

overpowers the ailerons at small angles of sideslip.

Another lateral characteristic observed since publication of refer-

ence 1 is that, like other airplanes, the X-5 at _9 ° sweep has a tran-

sonic wlng heaviness. Because the X-5 aileron effectiveness is sustained

through the transonic region, the wing heaviness is more easily controlled.

The ailerons present a difficulty with the X-} because of nonlinearity

of aileron hinge moments with Mach number and lift. This difficulty is

manifested in a lightening of the control forces at Mach numbers above

0.92 in straight flight and in aileron "snatch" or overbalance at hlgh

lift. The ailerons have large sealed internal balances. These changes in
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hinge moments make it difficult for the pilot to keep from exciting the

transonic lateral oscillation. At high angles of attack, the snatch

required use of a strap to perform precise longitudinal accelerated

maneuvers without severe inadvertent rolling.

w

Dynamic lateral-directional considerations bring up a note to be

added to reference 1. The sustained longitudinal oscillation of the X-4

at a Mach number of 0.88 was stressed in 1951 and attributed to coupling

with small residual ya_-ing and rolling at related frequency. This effect

has been confirmed analytically by the Ames Aeronautical Laboratory.

This small amplitude oscillation at 1 g disappeared when the airplane

static margin was increased which changed the longitudinal- and lateral-

frequency relations. However, a similar oscillation reappeared at a

Mach number of 0.94 at 2g and above, with a frequency of 2 cps and with

a total amplitude of more than 2g.

This subject brings up another type of coupling experienced on the

X-5. Cross coupling caused by engine gyroscopic moments has an undesir-

able influence upon X-5 transonic characteristics. Figure 7 shows the

X-5 response at a Mach number of 0.85 to rudder and elevator pulse inputs.

Gyroscopic moments excite lateral responses to elevator inputs and longi-

tudinal response to rudder inputs. Nose-down maneuvers induce right

sideslip and, conversely, nose-up maneuvers induce left sideslip. Simi-

larly, a right turn induces a nose-down moment and a left turn induces

a nose-up moment. The interaction of these coupled motions results in

oscillatory behavior which is aggravated because the lateral-directional

natural frequency is similar to the longitudinal natural frequency. The

high dihedral contributes further to the lateral-directional oscillation.

This gyroscopic coupling is responsible in part for the unsatisfactory

transonic behavior of the X-5. Both the X-5 and the XF-92A, because of

their very high effective dihedral, are very sensitive to small disturb-

ances which easily excite small erratic motions even though the damping

of both airplanes is high. Although these motions are about three axes,

their origin is in the lateral-directional characteristics.

Adverse contributions of high dihedral to handling qualities have

been mentioned several times. The 59 ° X-5 and the 60 ° XF-92A have effec-

tive dihedral of the order of 20 ° . Perhaps it is important to emphasize

here that this high dihedral effect is felt to be very undesirable.

Dynamic tunnel tests indicate that, for good flying qualities for low-

aspect-ratio configurations, the ratio of Cn_/C_ should be about 2 or

more, whereas with the XF-9_ the ratio is less than 1/2.

The supersonic lateral dynamic behavior of the D-558-II since being

described in reference 1 has been investigated further. The suggestion

made then that the motions were aggravated by low normal acceleration

has been substantiated further. Flights have been made at several
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constant values of angle of attack with either or both rudder and ailerons

fixed or both controls available to the pilot.

Figure 8 shows a run at an angle of attack of -i ° during which, with

use of all controls, the pilot could prevent divergence of the oscillations.

The motion has shown a similar but less divergent nature with power off

as is also illustrated and this case is used to show the observed effect

of angle of attack. In the same speed range as with power on, a pull-up is

started at a Mach number of 1.7 with power off, and the oscillation is

damped rapidly. Figure 9 shows the variation of the magnitude of the

yawing oscillation with angle of attack for two speeds. The magnitude

varies with speed and power, but the trend with angle of attack is the

same with either power on or power off. It is felt that the influence

of angle of attack results primarily from the change of the inclination

of the principal axis of inertia because only slight changes in lateral

derivatives occur in this angle-of-attack range.

o

Another lateral-directional problem has been experienced with the

X-5 which exhibits a directional divergence at lifts above the longitudinal-

stabilityboundary. This directional divergence has led to some startling

maneuvers. Figure lO is a time history of a push-down--pull-up maneuver

where the longitudinal-stabilityboundary was penetrated. The airplane

pitched, then diverged in sideslip to about 30° and a violent spiu resulted

during which the rolling record went off scale at 5 radians/sec. The air-

plane continued in a horizontal accelerated spin for several seconds before

a conventional spin resulted and recovery was made. A pitch-up will not

serve as a warning for the directional divergence at a higher lift but

instead will probably assure its occurring. A directional divergence of

the type experienced by the X-5 is intolerable and dangerous. The D-558-II

has encountered a similar divergence at high lift.

To summarize the preceding comments, the following conclusions are

indicated:

i. In general, the transonic region of heavy buffeting, high drag,

instgoility, trim effectiveness, stability changes, and dynamic sta-

bility still warrants major attention.

e

2. Also, in general, the pitch-up, roll-off, and directional diver-

gence have their origin in local changes of spanwlse lift distribution

at moderate to high lifts. With swept-wing airplanes these considera-

tions are manifested with moment changes about all three axes. Wind-

tunnel data indicate these phenomena but flight tests have been necessary

to interpret the wind-tunnel information.

3- The specific problems fall into two categories. The first is the

group of characteristics that are potentially dangerous or in any event

intolerable. These characteristics are presented as follows:
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(a) With fixes which apply only to the wing, no real solution has

been found for the intolerable and dangerous pitch-up behavior of swept-

wing airplanes of the configurations tested at transonic and low super-

sonic speeds.

(b) Directional divergence of the type experienced by the X-5

assumes importance equal to that of pitch-up.

(c) The severe roll-off which is related to pitch-up and direc-

tional divergence in its cause is wholly as dangerous and intolerable.

Its addition to the two preceding characteristics compounds the diffi-

culty presented to the pilot.

The second category is concerned with problems which are not partic-

ularly dangerous but still do not approach the minimum handling-qualities

requirements. These problems are presented as follows:

(a) Trim and stability changes of any airplane may become important

when they induce severe pitch-up.

(b) Low-rate pitch-ups characterized by the B-47 reduce the danger

aspect of an otherwise intolerable behavior.

(c) The sideslipping behavior in straight flight of the XF-92Amay

explain its poor landing behavior.

(d) High effective dihedral of severely swept wings adversely

affects handling qualities.

(e) The supersonic lateral motions of the D-558-II which decrease

with increased angle of attack apparently are influenced by the change

in inclination of the principal axis of inertia with angle of attack.

q

o
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RELATION BETgEEN FLIGHT BEHAVIOR AND STALL

PROGRESSION ON SWEPT WINGS

By Steven E. Belsley and Seth B. Anderson

Ames Aeronautical Laboratory

INTRODUCTION

Previous papers have pointed out the existence of erratic moments

on an airplane when large areas of separation exist on the wing due

either to stalling or shock separation. On sweptback wings the areas

of separation begin over the outer part of the wings near the wing

tips and must be controlled if smooth flight is to be accomplished at

high values of lift. Although completely satisfactory control of sepa-

ration over the Mach number range has not yet been accomplished, it has

been possible to provide some improvements. It is the purpose of this

paper to point out the degree to which pilots' opinions are affected by

changes in nonlinear variations of aerodynamic parameters.

TEST EQUIPMENT

In figure 1 are shown a number of modifications designed to control

separation which were flight tested on the F-86A airplane. These are

the normal airplane with slats, cambered leading edge, extended leading

edge plus fence, and blunt trailing-edge ailerons. In this paper evalu-

ation of the modifications themselves is not the primary concern - but

rather the effect the modifications have in altering the airplane

behavior as far as the pilot is concerned.

RESULTS AND DISCUSSION

Characteristics at Low Speeds

Pitching-moment characteristics with a sharp break.- The effect of

the shape of the pitching-moment curve will be discussed first. While

the stable break shown in figure 2 by the solid curve is to be desired,

it is possible that an unstable break (shown by the dashed curve) near

maximum lift coefficient can be tolerated, provided the airplane does

not pitch to large attitude. The stable break is for the F-86A with

the slats open while the dashed curve was obtained by replacing the
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slats with a cambered leading edge. These data were obtained from ref-

erence i. Note that the elevator-angle variation for trim obtained from

flight tests was very similar for both cases. The pilot was aware of
the nose-down behavior of the aircraft at the stall for the slats-open

case; however, for the cambered leading edge, the pilot was not conscious

of a pitch-up. Examination of the time histories indicated that the air-

plane actually did attain a nose-up pitching velocity of 0.2 radians per

second; however, this occurred after CI_ x and therefore was accom-

plished by a decrease in normal acceleration. It is believed that the

pilots' insensitivity to the pitch-up associated with this type of

pitching-moment break is primarily due to the absence of any inad-

vertent increase in normal acceleration. This is in contrast to the

results obtained at higher speeds which will be covered later in this

paper.

Rollin_-moment characteristics.- For the airplane with the cambered

leading edge, the pilot was aware of a severe roll-off. This prompted

a closer study of the wind-tunnel measured characteristics which would

be indicative of such a roll-off. In general, the only guide for antici-

pating this type of stall behavior from wind-tunnel tests has been from

an inspection of the relative sharpness of lift-curve peaks coupled with

tuft studies of stall progression on the wing. A sharp lift-curve peak

is usually indicative of a rapid stall progression and large rolling

moments. With this in mind, note in figure 3 the lift curves and rolling

moments near maximum lift taken from full-scale wind-tunnel tests for the

normal airplane with slats open and with the cambered leading edge. For

the normal airplane the lift-curve peak is fairly smooth and well-rounded

while for the cambered leading edge the lift-curve peak has a sharp

break. It is seen that for the normal slats-open case the rolling

moments through the stall are fairly small; however, for the cambered

leading edge the rolling-moment variation above the stall is of large

magnitude.

Stalls in flight indicated a correlation between the pilot's opinion

of the suitability of the stall and the magnitude of the rolling motions

(ref. 2), in that the objectionable stall was accompanied with large

rolling motions. If these results were able to be interpreted simply

in terms of static wind-tunnel measurements, some insight would be had

into what to look for in the wind tunnel. Considering only gross effects

leads one to believe that the objectionable airplane rolling motions must

be due to the large rolling moments indicated previously. A comparison

of pilots' opinions of the suitability of the stall with the rolling

moments at the stall obtained from static wind-tunnel measurements at

zero sideslip for a number of configurations yielded the results pre-

sented in figure 4 (ref. 3). These magnitudes were not a function of

the asymmetry of the airplane since similar magnitudes of rolling-

moment coefficient were obtained when the airplane was stalled at various

m

G
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constant values of sideslip. It is shown that a reasonable correlation

can be achieved, indicating that if the rolling-moment coefficient at

the stall is kept below O. 01 the chance is very good that the stalling

characteristics will be considered satisfactory, while values above 0.03

will be unsatisfactory. The correlation is good enough to be used as a

guide during wind-tunnel tests of a prototype or for comparisons between

various schemes designed to increase the maximum lift capabilities of

the aircraft where good stalling characteristics are necessary. It

should be noted that the rolling-moment criteria shown in figure 4 are

limited to the type and size of aircraft tested. In addition these

results were obtained at flight values of Reynolds number.

Pitching-moment characteristics with a 5radual break.- In this
section the gradual break in pitching moment will be covered in contrast

to the sharp pitching-moment break previously discussed. An example of

this type of pitching-moment variation is shown in figure 5 for the

RF-84F at low speeds (ref. 4). Note that the pitching-moment variations

depart from linearitywell before maximum lift. For the unmodified air-

plane shown by the solid curve, the pilot was well aware of longitudinal

instability in approaching the stall. Although there was little or no

tendency to roll-off, the stall was considered unsatisfactory because of

the necessity of applying continually increasing down-elevator as the

speed was reduced and the possibility of running out of elevator control

to check any dynsmic maneuvers. The elevator angle required for trim for

this condition is also shown in figure 5- These results are for a wings-

level straight-flight stall. This pitching-moment characteristic was

particularly objectionable at higher speeds, such as in an approach turn,

because of the uncontrolled increase in normal acceleration. Addition

of a blunt leading edge over the outboard part of the wing plus a fence

changed the pitching-moment variation to that shown by the dashed curve.

To the pilot this resulted in an improvement over the unmodified air-

plane in the approach to the stall. This is reflected in the variation

of elevator angle with airspeed which indicates an over-all increased

stability in approaching the stall. Although a pitch-up is still evident

with this improvement and would be unacceptable under the Air Force

flying-qualities requirements, it was not considered violent, was easily

controlled by the pilots, and was preceded by adequate warning in the

form of buffet (ref. 5)- In addition, it is felt that the effectiveness

of the longitudinal control would greatly influence pilot opinion of the

controllability of an airplane with this type of pitching-moment vari-

ation. A very effective control would result in smaller stick movements,

and hence the instability apparent to the pilot would be reduced.
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Characteristics at High Speeds

Normal airplane characteristics.- Going now to higher speeds, the

effects of Mach number in modifiying the shape of the pitching-moment

curves for the F-86A aircraft are shown in figure 6. It will be noted

that the pitching-moment variation with CN goes from a gradual break

at a Mach number of 0.80 to a more abrupt break at a Mach number of

about 0.90o These pitching-moment variations are reflected in the

elevator angle and elevator control-force variation with g, showing

gradual variations for trim at 0.80 Mach number and more abrupt vari-

ations at 0.90 Mach number (ref. 6). At high altitude the pilot felt

that the pitch-up at 0.80 _ch number was rather mild but still objec-

tionable, while at 0.90 Mach number the pitch-up was very abrupt and

considered extremely unsatisfactory. At 35,000 feet the pitch-up may

result in an overshoot of about ig and a positive pitching velocity of

about 0.3 radian per second at 0.80 Mach number and as much as 3g

overshoot and 0.6 radian per second at 0.90 Mach number. As far as

the pilot is concerned, the pitch-up at high Mach numbers is mainly a

longitudinal disturbance although lateral unsteadiness or roll-off may

precede the pitch-up and be troublesome in precise maneuvers such as in

a tracking run.

Effect of modifications.- Obviously the pitch-up at high Mach num-

bers is undesirable, and various modifications have been flight tested

in an attempt to eliminate or modify it. Shown in figure 7 are tuft

patterns obtained in flight at 0.82 Mach number. Also shown in figure 7

is the wing-fuselage pitching moment. Note first, for the normal air-

plane, the separation starting at midchord, spreading rearward and out-

board with increase in CN. Note also the pitching-moment changes

accompanying the separation growth. Now inspect the right-hand side of

the figure where results are shown for a 15-percent chord-extension

plus an outboard fence. Here it is shown that separation starts at the

midspan position and spreads predominantly inboard with increase in CN-

The wing-fuselage pitching-moment changes accompanying this separation

spread show a stable variation with increase in CN. Although the pilot

felt that he had improved control at the higher values of l_ft for the

configuration with the extended leading edge, he was not completely

satisfied. The reason for this is reflected in the data presented in

figure 8, which show the total airplane pitching-moment curves and the

elevator and stick-force variations with g for the normal and modified

airplanes. It was found that the pilot objected to the region of neutral

stability which occurred too close to level flight CN values at high

altitude. In summing up the effect of modifications at this lower Mach

number region near 0.80, it is interesting to note that the use of out-

board slats also resulted in improved pitching-moment characteristics

while the use of fences alone did not provide any improvement (ref. 7).
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In the M_ch number range around 0.90 a different type of separation

pattern was evident from tuft studies taken in flight and are shown in

figure 9. Looking first at the normal airplane it can be observed that

initial separation takes place along the trailing-edge part of the wing

following the severe adverse pressure gradient which fans out from the

juncture of the fuselage and the wing trailing edge. Note how the

pitching-moment changes are more abrupt - reflecting the large, pre-

dominantly outboard growth of separation. Now on the right-hand side

of the figure note for the leading-edge extension and fence how the

tuft patterns remain substantially similar to the normal airplane, the

pitching moments indicating only a slightly higher CN value before

the unstable break. This postponement of the pitch-up was noticeable

but not particularly appreciated by the pilot, since the abruptness of

the pitch-up remained unchanged and at high altitude the acceleration

at which the pitch-up occurred was below the structural limit of the
airframe.

Another modification which was particularly effective in the Mach

number range around 0.90 was the addition of a blunt trailing edge to

the ailerons. Although the pilot felt that this was the best modifi-

cation tested on the F-86 airplane in the Mach number range around 0.90,

the reasons for his feelings were not particularly evident from the

data. Shown in figure i0 are the airplane pitching-moment curves and

control variations for the normal airplane and the airplane with the

blunt trailing-edge ailerons. For the blunt trailing-edge configuration

the pilot noted a marked improvement in control at the higher values of

lift. It can be seen that by comparing with the normal airplane, the

departure from linearity in the pitching moment occurs at the same CN

value and the over-all change in stability is about the same; however,

for the blunt trailing-edge configuration the pitching-moment variation

after the break is less unstable. This suggests that a particularly

bad pitch-up may be mitigated by flying at a more forward center-of-

gravity position, resulting in a stable rotation of the pitching-moment

curves. Another factor appreciated by the pilots for the configuration

with the blunt trailing-edge ailerons was the complete absence of a

roll-off or wing dropping for level flight lift values over the extent
of the tests to i. 06 Mach number.

One factor influencing the pilots' opinion of the pitch-up behavior

is the adequacy of the longitudinal control. Considering control by

elevator and all-movable tail, the stick-force variations per g are

shown in figure ll for 39,000 feet altitude for a given airplane sta-

bility shown by this pitching-moment variation at 0.90 Mach number.

With this reduced variation in stick force offered by the all-movable

tail, the pitch-up was just noticeably apparent to the pilot. However,

even with this apparent improvement in control, the pilot's tracking

ability remained poor in the pitch-up region.
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It should be noted that in this paper, reference has been made

primarily to steady-state conditions and the pilot's reactions thereto.

Since pilot reaction may be affected also by angular accelerations

experienced in the transient, unbalanced phase of a maneuver, appli-

cation of our results to other airplanes should consider not only dif-

ferences in pitching-moment variations but also differences in the ratio

of aerodynamic moments to inertia moments.

CONCLUSIONS

The results of this paper can be summarized as follows:

I. Unstable low-speed longitudinal-stability changes occurring at

or beyond maximum lift were not noticed by the pilot because of a

decrease in normal acceleration accompanying the pitch-up.

2. Satisfactory stalling characteristics are indicated if the

rolling-moment coefficient at stall is less than 0.01.

3. Although a linear pitching-moment variation to maximum lift is

desired by the pilot_ an airplane possessing a slow forward neutral

point shift with increase in CN may be tolerable.

4. At high speeds presence of any pitch-up was considered unde-

sirable} however, improvements were appreciated. Regions of reduced

stability were not as objectionable as long as the airplane was stable

near maximum load factor. The use of a powerful longitudinal control

device such as an all-movable tail reduces apparent instability and

provides improved control in the pitch-up region, but the pilot's

tracking remained poor.

5. Various modifications to change the pitch-up characteristics

are roughly correlated with the separation patterns measured in flight.
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STALL PROGRESSION ON SWEPT WINGS AT LOW AND HIGH SPEEDS

By Charles W. Harper and Robert M. Crane

Ames Aeronautical Laboratory

STALL PROGRESSION AT LOW SPEEDS

.P
o

The need for some design procedure which will enable the designer of

swept wings to obtain desired stalling characteristics without recourse

to extensive trial-and-error testing is very apparent. In undertaking

the development of a procedure, the most logical starting point seemed

to be the procedure developed to a useful point by Anderson and others

(e.g., refs. 1 to 3) for the case of the unswept wing. A factor which

has made this procedure especially useful is that span-loading and sec-

tion characteristics are handled independently. This can be done when

it is assumed that each section operates independently except for the

induced upwash variations across the span. In order to ex+.e_, the

method to swept wings while maintaining this usefulness, it is necessary

(i) to use an applicable span-loadimg procedure, (2) to choose that sec-

tion on the swept wing the characteristics of which can best be approxi-

mated from section tests, and (3) to continue to assume independence of

the sections. Withregard to the first point, several methods, of varying

degrees of accuracy, are available. With regard to the second point, it

is assumed in this paper that the most appropriate choice, in that the

greatest understanding, and hence control, of the stall will result

therefrom, is to consider the effective section to be that one lying

normal to the quarter-chord llne of the wing; this assumption follows

directly from the theory of sweep.

Thus as shown in figure l, by modifyingAnderson's basic method, it

is possible to predict the wing lift coefficient and location on the span

at which the first section will stall (refs. 4 and 5), as is done by

Anderson for the straight wing (ref. 1). Also shown in this figure are

the force-test results for this wing. Stall was predicted at a CL

of 0.58 and at a span location such that a nose-up pitching moment would

result. The force tests show no effects of stall until about 0.5C L and

no evidence of a nose-up moment until about 0.6C L.

Similar results have been found when applying the method to other

wings in that an increment in llft is almost always realized before the

wing-force characteristics show the effect of stall. The magnitude of

this increment is as yet an unpredictable factor but the fact that it

is not much changed for a given wing plan form by modifications to the
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airfoil sections and the fact that it seems to vary regularly with wing

plan-form changes, and so can be empirically accounted for, enables

practical use to be made of the method. For instance, as shown in fig-

ure 2, the predicted effects of adding to the wing Just considered a

partial-span nose flap in order to raise the maximum lift of the out-

board sections are a slight increase in wing lift before stall and a

reduced degree of instability after stall because of the inboard shift

of initial stall. Pitching-moment variations show that both effects

were realized and that the lift increment due to the flap was very well

predicted.

Q

In another case, illustrated by figure _, it was desired to reach

a wing CL of 1.4 at an angle of attack of 14 ° before stall was

encountered in the landing condition. Allowing for its conservatism,

empirically determined in this case to be O.15CL, the method was used

to choose flaps and leading-edge slats from available two-dimensional

data. Shown in the figure are the predicted (ref. 6) span-load distri-

butions for the CL at which stalling begins for the modified wing and

also the measured moment characteristics; these measured moment char-

_cteristics indicate that the design requirement was met.

The direct approach to the control of swept-wing stall illustrated

by the two cases Just shown may prove adequate in many cases, provided

it can be reasoned that there will exist an upper limit to the angle of

attack or lift coefficient reached in normal operation and hence air-

plane characteristics beyond this point are of no interest. Even

accepting this provision, however, it is doubtful whether enough con-

trol of the stall can be realized by section modification alone to make

this approgch sufficient in all cases. This is due to the conflict

between requirements for good low-speed and good high-speed section

characteristics and to the lack of information regarding control of

section stall at high speed where the pitch-up problem is also serious.

Therefore, in many cases it is necessary to devise means of controlling

the spread of stall in the lift-coefficient range between the first

appearance of stall or separation and maximum lift. Although, in the

case of the unswept wing, Anderson's method (ref. i) can be used suc-

cessfully to design for a desired stalling progression, the modified

method proposed herein for swept wings fails completely in this regard.

Figure 4 shows why this failure occurs and indicates that wing sweep

introduces a new factor which has a profound effect on section stalling

characteristics. It is clear that the factor of major importance in

producing observed stall progressions on swept wings is the increasing

value of'maximum lift realizable by sections as they are placed more

inboard (ref. 7)- At all stations the maximum lift exceeds that meas-

ured for the same section in two-dimensional tests. Similar data have

been obtained for many wings and throughout the subsonic Mach number

range.

o



i

o

@@@O@• @@0@0@•@• @0•_•O@@@•_@Q@@Q@•@ • • • •0 • • • •• _ @@0• • • • • @g • •
CONFIn %vrI  " " "" " " 5• 0 gee • • e•

I

Rather simple reasoning, which can be presented with the aid of

figure 9, indicates a possible source of this effect of sweep although

as yet no proof exists. Consider first the case of the infinite yawed

wing. Assume that the maximum lift of any section will be governed by

the stability of the turbulent boundary layer as it flows normal to the

isobars which in this case are exactly parallel to the wing leading

edge. Assume further that the stability of the boundary layer against

an adverse pressure gradient is not materially affected by the shearing

resulting from the spanwise component of the free-stream velocity. This

assumption would imply also that the boundary-layer thickness measured

either parallel to or normal to the isobars would be constant along any

chordwise line, as indicated by arrow length. Under these conditions,

the section maximum llft coefficient will b_ unaffected by the angle of

yaw as long as the reference section is chosen normal to the wing leading

edge and the reference velocity is that component of free-stream velocity

normal to the wing leading edge. Making this infinite yawed wing semi-

infinite by forming a tip in the downstream portion will not appreciably

alter the conditions Just described. However, making it a finite wing

by placing a barrier in the upstream portion will markedly change the

conditions. As the boundary layer is carried away from the downstream

face of the barriers, it can no longer be replaced and hence a thinning

should take place, as indicated by the reduced arrow length. The thinning

should be evident whether boundary-layer thickness is measured parallel

or normal to the isobars. This thinning is, in effect, boundary-layer

control and should increase the maximum lift of these sections above

the value reached without the barrier and hence above the value for the

section in the purely two-dimensional case. It is easy to see that some

degree of thinning will be felt along the entire span, being greatest at

the root and least at the tip. This variation in thinning agrees with

the observed variation in section maximum lifts. Thus, despite the fact

that this reasoning ignores many factors, which means that it could be

correct in only the grossest sense, it is believed to outline the major

factor controlling the stall progression of swept wings and has been

extremely useful in guiding the direction of research to control stall

progression. In particular, it emphasizes the fact that, if desirable

stall progression is to be realized, some means of adjusting this

boundary-layer control must be available. Further, in order to satis-

factorily refine the method discussed previously, some quantitative

measure must eventually be made of this effect.

One obvious way to control stall progression is to redistribute

the boundary-layer-control effect so that maximum lift coefficients

typical of the root can be realized near the tip and vice versa.

Establishing barriers, such as fences, to the boundary-layer flow would

be expected to do this since just outboard of them the boundary-layer

control should be as large as that of the root while just inboard it

should be as little as that of the tip. Hence, at lift coefficients

above that for initial stall on the unmodified wing, the addition of
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barriers should unstall the area just outboard of them and produce stall

Just inboard. The increased loading thus realized outboard plus the

decreased loading inboard are, of course, the changes which would be

adjusted to produce satisfactory pitching-moment characteristics.

Figure 6 shows the measured effect of fences on the distribution

of section lift and wing stall on a low-aspect-ratio swept wing at a

wing lift coefficient well above the first appearance of stall. The
resem01ance of the m_as_ed effect to t_t proposed indicates that the

reasoning is sound; the major redistribution of lift and stall indicates

that the effect is great. As shown in figure 7, very similar results

with regard to the redistribution of section lift have been found on

a high-aspect-ratio wing when fences were installed (ref. 8). Shown

here also is the magnitude of the pitching-moment change which can be

realized from these span-loading changes.

It also has been found that an aerodynamic fence can be effective

in controlling the boundary-layer drain. Such a fence is in the form

of a vortex lying Just above the wing surface and rotating so as to

sweep the boundary layer inboard. A vortex of this nature can be

created by a discontinuity at the wing leading edge such as formed by

a partial-span extended slat. Figure 8 shows the effectiveness of such

a device in shifting the point of initial stall to control the pitching

moment of a 45 ° swept wing (ref. 9). Note that when the discontinuity

was moved far inboard, it was unable to overcome the boundary-layer

drain and initial stall appeared at the tip. It has been observed that

increasing the sweep, which increases the boundary-layer control at the

inboard sections, restricts the effectiveness of such a device closer

to the tip, thus indicating that at some sweep a leading-edge discon-

tinuity and probably also a fence will become incapable of controlling,

to any useful degree, the stall progression.

Some other points in connection with leading-edge extensions are

of interest. Smoothly fairing the discontinuity into the wing leading

edge sharply reduces its effectiveness, as would be expected from the

reduction in vortex strength. Reversing the discontinuity so that a

sudden reduction in chord is encountered when moving toward the tip

entirely cancels the effect of a discontinuity, as would be expected
since in this case the vortex rotates so as to enforce the boundary-

layer drain. This statement does not apply to notches which have an

entirely different geometry. Finally, in comparing the effectiveness

of fences and leading-edge discontinuities, it must be remembered that

these discontinuities are often formed by the inboard end of a device

designed to increase the maximum lift of tip sections; in this way two

means of increasing tip section CLmax are usea, giving greater control

over stall than may be realized by either one alone.

Q
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The foregoing discussion has attempted to present, for the low Mach

number case, a brief description of the stalling of swept wings and the

operation of devices used to control this stall. The whole picture is

exceedingly complex, however, and much research with regard to the

effects of plan form, airfoil section, Mach number, and so forth, is

required before a wholly quantitative analysis can be made. To illus-

trate the progress being made in one field, the next section discusses

the effects of Mach number on the stall progression.

EFFECTS OF MACH NUMBER ON STALL PROGRESSION

a

The basic method, described in the preceding section of this paper,

of calculating the lift coefficient for initial separation on a swept

wing can be applied at supercritical speeds as well as at low Mach num-

bers as long as the shock waves that exist on the wing are due to the

flow over the wing profile and are not a result of the three-dimensional

flow field. This is shown in figure 9 which compares the measured

pitching moments on a 45 ° swept wing of aspect ratio 5 (ref. 10) with

the lift coefficient for separation predicted from section data. At

Mach numbers up to 0.8_ the predicted value of llft coefficient agrees

well with that at which nonlinearities are evident in the pitching-

moment data.

At transonic Mach numbers, shock waves usually exist which cannot

be correlated with the section characteristics of the wing. The shock

wave emanating from the wing-fuselage juncture and the shock wave

associated with deceleration of the entire three-dimensional flow field

are examples of disturbances of this type. The data shown at a Mach

number of 0.92 are typical of this Mach number range. Areas of separated

flow are evident at lift coefficients above about 0.20 although the value

of llft coefficient for separation predicted from section data is

about 0.40. Under these conditions, section data cannot be used to pre-

dict the wing llft coefficient at which initial separation will occur,

and recourse must be made to experimental data on the three-dimensional

wing.

A second example of the use of section data at high Mach numbers is

shown in figure lO. In this case a section modification was made to the

leading edge of a 35 ° swept wing in an effort to increase the lift coef-

ficient for pitch-up (ref. ll). Section data obtained at low speeds had

indicated the large gains possible by increasing the airfoil leading-

edge radius and introducing camber on the forward part of the airfoil.

At higher Mach numbers and a Reynolds number of 2 × l06, the section

data indicated that the leading-edge modification would be ineffective,

the maximum llft coefficient of the section wlth forward camber
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decreasing rapidly as the Math number was increased and actually becoming

less than that of the basic section at a section Mach number of 0.65

corresponding to a wing Mach number of 0.80. That the predicted trend

was correct is evidenced by the experimental data on the swept wing which

show that the section modification did not increase the lift coefficient

for pitch-up at the Mach numbers above about 0.80.

This adverse effect of compressibility on the maximum lift of the

cambered airfoil appears to be peculiar to airfoils which have their

camber concentrated near the leading edge. When the camber is dis-

tributed over the chord, such as with the a = 1.O, a = 0.8, or even

a = 0.4 mean lines, the lift increment due to camber is maintained to

high section Mach numbers.

The data shown in figure I0 emphasize a factor which was pointed

out earlier in this paper. In order to utilize section data for the

prediction of the lift coefficient for initial stall on a swept wing,

the section data must be at the Mach number and Reynolds number corre-

sponding to the component of velocity normal to the sweep of the wing.

For example, on the cambered wing shown in this figure, increasing the

Reynolds number at low speeds from 2 X lO 6 to ll X l06 increased the

lift coefficient for pltch-up from 0.80 to 1.2. Similar Reynolds

number effects were evident in the section data. Just how important

the Reynolds number is at the higher Mach numbers has not been firmly

established but there are experimental data on swept wings, especially

those having large thickness-chord ratios or cambered sections, which

show large effects of Reynolds number on the lift coefficient for

pitch-up at Mach numbers as high as 0.94.

The effectiveness of fences and of leading-edge discontinuities

in delaying or modifying the pitch-up is much diminished at high tran-

sonic Mach numbers. An example is shown in figure ll which shows the

effect of a fence on the pitching-moment characteristics of a wing-

fuselage combination having a 35 ° swept wing of aspect ratio 4.5

(ref. 12). At Mach numbers less than about 0_82, initial separation

occurred along the leading edge of the wing and the fence was effec-

tive in improving the pitching-moment characteristics of the wing-

fuselage combination. It did this not by delaying separation on the

wing, but by redistributing the separated regions along the span so

that the initial stalled area and its subsequent growth was such as

to produce a nose-down moment. At Mach numbers of 0.85 and above, tuft

studies showed that flow separation occurred on the outer sections of

the wing behind a line that was approximately normal to the plane of

symmetry. Pressure data are not available but it is believed that the

disturbance causing this separation was a shock wave emanating from

the wing-fuselage Juncture. There was no spanwise flow in the region

of the fence and the force tests showed the fence to be completely inef-

fective as would be deduced from the tuft studies.

e-
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In contrast to this result, figure 12 shows the effect of adding

fences to a cambered 40 ° swept wing having an aspect ratio of lO

(ref. 13). In this case, both pressure data and tuft studies showed

separation starting from the trailing edge and at the higher Mach num-

bers a shock wave was evident which produced local separation along a

line approximately parallel to the wing leading edge. In this case,

the tuft studies showed spanwise flow in the region of shock-induced

separation and although the fences were not as effective as they were

at a Mach number of 0.25, they still afforded considerable improvement

in the pitching-moment characteristics at Mach numbers of 0.80 and 0.90.

That this is not the usual case can be seen from inspection of data

from the Langley high-speed 7- by lO-foot tunnel and 16-foot transonic

tunnel (refs. 14 to 17) which show little, if any, effect of fences on

the pitching-moment characteristics of thin 45 ° swept wings of aspect

ratio 4 at Mach numbers between 0.90 and 0.98. It is believed that

these cases are similar to that shown for the 35 ° swept wing in which

the shock-induced separation is not associated with the wing section

but rather with the entire three-dimensional flow field.

The effects of a leading-edge chord-extension and of a partial-span

slat on a thin 45 ° swept wing of aspect ratio 4 and shown in figures 15

and 14 (refs. 17 and 18). Both the slat and the chord-extension tend

to modify the stall progression over the wing by providing an aerodynamic
barrier to spanwise flow. In addition the slat increases the lift-

carrying potential of the outer section of the wing. Inspection of the

data reveals that the slat and the leading-edge extension were about

equally effective in delaying the pitch-up at Mach numbers up to 0.85.

However, at Mach numbers between 0.90 and 0.98, the slat lost only part

of its effectiveness while the leading-edge extension was almost com-

pletely ineffective. The data shown at a Mach number of 0.94 are

typical for this range of Mach number. In general, the effectiveness
of leading-edge chord-extensions and slats diminishes at transonic

speeds. As was the case with fences, the leading-edge devices do not

appear to be powerful enough to have much effect on the initial loca-

tion and subsequent growth of separation induced by strong shock waves.

When properly located along the span, however, these devices do main-

tain effectiveness to a higher Mach number than do fences and can afford

some improvement in the pitching-moment characteristics throughout the

entire speed range.

In thls paper it has been demonstrated that a fairly successful

method has been developed for predicting and controlling the first

appearance of stall on a swept wing through use of span-loading theories

and section data. The method can be applied at supercritical Mach num-

bers as well as at low speeds providing the shock waves that exist are

due to the flow over the wing profile and are not a result of the

%:
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three-dimensional flow field. The lift-coefficient range above the point

of initial stall has been examined and conclusions have been drawn as to

the important factors affecting stall progression in this region.

Several different types of stall-control devices for swept wings

have been examined and it has been demonstrated that their action is

essentially that of modifying, either by terminating or reinforcing, the

automatic boundary-layer control action which is inherent on a swept wing.

There is a range of transonic Mach numbers on swept wings at which the

lift coefficient for initial separation cannot be predicted from section

data. The lower limit of this Mach number range is the Mach number at

which strong shocks from the wing-fuselage combination predominate over

the section characteristics of the wing in causing separation. The

actual value of Mach number at which this condition first exists is a

function of the wing sweep, aspect ratio, thickness-chord ratio, and

the wing-body interference. In this same Mach number range, wing fences

and leading-edge extensions are almost completely ineffective.

4

q

&-



e_

.. ..- • .-. .-- • ... : --- --.
• • • @@O @ OO@ • • • _O • •• . .. -. -. ::" . ..

C__ • ooo • • • oo• o•°oo o•• • • 0• o• 9

i. Anderson, Raymond F. : The Experimental and Calculated Characteristics

of 22 Tapered Wings. NACA Rep. 627, 1938.

2. Pearson, Henry A., and Anderson, Raymond F. : Calculation of the

Aerodynamic Characteristics of Tapered Wings With Partial-Spau

Flaps. NACA Rep. 66_, 1939.

3. Sivells, James C., and Neely, Robert H.: Method for Calculating Wing

Characteristics by Lifting-Line Theory Using Nonlinear Section Lift

Data. NACA Rep. 86_, 1947. (Supersedes NACA TN 1269.)

4. DeYoung, John, and Harper, Charles W.: Theoretical Symmetric Span

Loading at Subsonic Speeds for Wings Having Arbitrary Plan Form.
NACA Rep _21, 1948.

_. _aki, Ralph L.: The Use of Two-Dimensional Section Data to Estimate

the Low-Speed Wing Lift Coefficient at Which Section Stall First

Appears on a Swept Wing. NACA RM Ag!E19, 19_l.

6. DeYoung, John: Theoretical Symmetric Span Loading Due to Flap Deflec-

tion for Wings of Arbitrary Plan Form at Subsonic Speeds. NACA

Rep. lOT1, 1952. (Supersedes NACA TN 2278. )

7- Hunton, Lynn W. : Effects of Finite Span on the Section Characteristics

of Two 45 ° Swept-Back Wings of Aspect Ratio 6. NACA RM A92AlO, 1952.

8. Boltz, Frederick W., and Shibata, Harry H.: Pressure Distribution

at Mach Numbers up to 0.90 on a Cambered andTwisted Wing Having

40 ° of Sweepback and an Aspect Ratio of lO, Including the Effects

of Fences. NACARMA92K20, 1993.

9. James, Harry A.: Low-Spe_d Aerodynamic Characteristics of a Large-

Scale 49 ° Swept-BackWingWith Partial-SpanSlats, Double-Slotted

Flaps, and Ailerons. NACARMA_2B19, 19_2.

i0. Johnson, Ben H., Jr., and Shlbata, Harry H.: Characteristics Through-

out the Subsonic Speed Range of a Plane Wing and of a Cambered and

Twisted Wing, BothHaving 45 ° of Sweepback. NACARMAglD27, 1991.

ii. Demele, Fred A., and Sutton, Fred B.: The Effects of Increasing the

Leading-Edge Radius and Adding Forward Camber on the Aerodynamic

Characteristics of a Wing With 39° of Sweepback. NACARMASOK28a,
1951.



"""'""""i "- .: - . ".. .-. • ... ..: .':
@ •

: ": ".•"'...:':...:"..:

12. Selan, Ralph, and Bandettini, Angelo: The Effects of Leading-Edge

Extensions, a Trailing-Edge Extension, and a Fence on the Static

Longitudinal Stability of a Wing-Fuselage-Tail Combination Having

a Wing With 35 ° of Sweepback and an Aspect Ratio of 4.5. NACA

RM A53EI2, 1953.

13. Edwards, George G., Tinling, Bruce E., and Ackerman, Arthur C.: The

Longitudinal Characteristics at Mach Numbers up to 0.92 of a

Cambered and Twisted Wing Having 40 ° of Sweepback and an Aspect

Ratio of I0. NACA RMA52FI8, 1952.

14. Goodson, Kenneth W., and Few, Albert G., Jr.: Effect of Leading-

Edge Chord-Extensions on Subsonic and Transonic Aerodynamic Char-

acteristics of Three Models Having 45 ° Sweptback Wings of Aspect

Ratio 4. NACA RM L52K21, 1953.

15. Spreemann, Kenneth P., and Alford, William J.3 Jr.: Investigation

of the Effects of Leading-Edge Chord-Extensions and Fences in

Combination With Leading-Edge Flaps on the Aerodynamic Character-

istics at Mach Numbers From 0.40 to 0.93 of a 45 ° Sweptback Wing

of Aspect Ratio 4. NACA RML53AOga, 1953.

16. Hieser, Gerald: An Investigation at Transonic Speeds of the Effects

of Fences, Drooped Nose, and Vortex Generators on the Aerodynamic

Characteristics of a Wing-Fuselage Combination Having a 6-Percent-

Thick, 45 ° Sweptback Wing. NACA RM L53B04, 1953.

17. West, F. E., Jr., Liner, George, and Martz, Gladys S.: Effect of

Leading-Edge Chord-Extensions on the Aerodynamic Characteristics

of a 45 ° Sweptback Wing-Fuselage Combination at Mach Numbers

of 0.40 to 1.03. NACA RM L53B02, 1953.

18. Runckel, Jack F., and Steinberg, Seymour: Effects of Leading-Edge

Slats on the Aerodynamic Characteristics of a 45 ° Sweptback Wing-

Fuselage Configuration at Mach Numbers of 0.4 to 1.05. NACA

RML53F25, 1953.

4'

@

,I



Q• • 00• • ••• ••

• ., -- ::. .-I0 el• ••e • 0•0 • • o• • •

- .....-• ,, .,• • • •'• • • 11

.4

¢I

.2

0

.6

CL

0 .04 .08

CD

PREDICTION OF THE FIRST APPEARANCE
OF STALL ON A SWEPT WING

.6 /-MAX. LIFT OF SECTION, _5"*

.yCORRECTED FOR SWEEP

_ PREDICTED

I I I I

PERCENT SEMISPAN I00

T /WING LIFT

_-_-_L /COEFFICIENT
_")/ PREDICTED

..__ TO SHOW FIRST
- _- EFFECTS OF STALL

,,/]
0 4 8 12 ,04.02 0

Figure 1

EFFECTS OF LEADING-EDGE FLAP ON FIRST STALL

1.0

.8

.6

cl.

.4

.2

--NO LEADING-EDGE FLAP
---- 60 % SPAN LEADING-EDGE FLAP

1.0

\

F __ \\

=1POINT OF FIRST STALL \_

Ctmox-? Il

/ _//_-_ "" -'_x-- _ "_\ ...... CL
,4 _

"_CL= 38 _

ACL='06 1
f I I ,,J i I

20 40 60 80 I00 .08 .04 0

PERCENT SEMISPAN Cm

_Cf CL=.62

i/_ CL=.57
f ACL =.'_'5"

"--NACA_

Figure 2



:"':i!_: ;: ;

METHOD USED TO DESIGN FOR GIVEN CONDITION

cl

6 c4
1.2 \_

/\ I

1.0 _/45o_

.8 _1

.6 _/y

.4 _-- FUSELAGE

_---_ SL AT SPAN

_ I<_, _,_'1,
0 20 40 60 80 I00

PERCENT SEMISPAN

WING WITH

1,6_- FLAPS 8 SLATS7

(1
1.2

I.Q

CL
.8

.6

.4

.04 0

""PLAIN WING

i I i
-.2 -.3

Gm

Figure 3

EFFECT OF SWEEP ON SECTION MAXIMUM LIFT

2 DIMENSIONAL TEST

_3 DIMENSIONAL TEST !_4_o

Y/Ill,,,
0 0 0 0 0 5 IO 15

ANGLE OF ATTACK, a

Figure 4



_'/]B-

O0 oOO • •gO @OO • OOO • ooO _O•

• • • oOo • •go • _O o • _0 • •
• • • • O• 0• • q_ Q • •

• 000 • 00 gO

C_C)]_T'_'= • •O0 ••" " • O• O" • • ._

'uP

•B

SPANWISE BOUNDARY-LAYER FLOW

ON A YAWED WING

_D

_GLE OF YAW VSPANWlSE

_--,_'-_"-_"'_" - Ix',

®.,,.. , .....
( _'_1 ._RSFERE__Cg"_k'_'-_'-.,_

BARRIER J '

Flgure 5

g

i

MEASURED EFFECT OF FENCES

FUSELAGE 7 FENCE

I 2 / _ FENCE 7
• F / _._._-.- I//

"_P,_ _---WITH
ct .6- i I _ _ FENCES

.2 - iTHOUT

n I ] = J ] FENCES
0 20 40 60 80 I00

PERCENT SEMISPAN

NO FENCES

FENCES

,,,,P

Figure 6



"'" ":ii::"::" "•." .... ..-;_i"_;_0_
000 O0

O

EFFECT OF FENCES ON A HIGH-ASPECT-RATIO SWEPT WING

A, 40 °

A.R., I0

-- PLAIN WING

------WING WITH FENCES

• 'FUSELAGE I "_\\_

0 .2 .4 .6 .8 1.0

PERCENT SEMISPAN Cm

1.2

c"t.4

J I

.08 0
I

-.08

Figure 7

EFFECT OF SLAT SPAN ON SWEPT-WING STALL PATTERNS

LEADING-EDGE _'_

SLAT SPAN ! _

40%

1.2

1.0

.8 CL
,6

60 % .2

_\\ c_
/ _-r,._

80 % 1.0

.8 CL

.6

.4

.2

I

.08

.0

18CL__ .6

= 2
0

Cm

Figure 8

gt



i

.-. .'° :. :- - •:-. :-- .-" .--

"..".."'" " "'"""• " "" "" " " 15

COMPARISON OF MEASURED a PREDICTED SECTION STALL

SWEEP, 45 ° A.R., 5.0

PREDICTED CL
FOR INITIAL

SEPARATION _

OLI I I
.08 0 -.08 .0

C m

M'.25

-.08.0B 0 -.08 .08 0 -.08

Cm Cm Cm

M=.80 M=.85 M :.92

Figure 9

o

EFFECT OF LEADING-EDGE MODIFICATION ON PITCH-UP

SWEEP, 55";A.R.,4.5

DETAIL OF SECTION
NAC MODIFICATION
8= MODIFIED

NACA 64A010

------ MODIFIED

.8

CL FOR .4

PITCH-UP

0

D-----._...,_/_ M EASUR ED

PREDICTED -v --_

I I I I
.2 .4 .6 .8

MACH NUMBER, M

I
1.0

Figure i0



f

1.2 -

.8-

CL

,4-

O- I I

.04

EFFECTS OF FENCE ON PITCH-UP

SWEEP, 35°_A. R.,4.5

/." "-../._NACA
S.AO,O .... FENCE

NO FENCE

ff
f

-.o4 .o4
Cm

M=.20

0 -.04
Cm

M=.80

I t

.04

Figure ii

l

0 --.04

Cm __
M=.85

q

EFFECTS OF FENCES ON PITCH-UP

SWEEP, 40°jA.R., I0.0

FENCES
NO FENCES

CL14/ - _"

0 L i I
•04 0 =04 .04 0 -.04

Cm Cm

M=.25 M=.80

I I

04

Cm

M =.90

ID

Figure 12



e_

Ii)

6o

O

""-"!7""" "'"
@• •Q• ••• •••

EFFECTS OF LEADING-EDGE CHORD EXTENSION ON PITCH-UP

SWEEP, 45 ° ;A.R., 4

NACA ..... WING WITH
-_-- _- _- _ L.E. EXTENSION

CL

0 n z a I J I I , I i IF I I I I
.08 0 --.08 .08 0 --.08.08 0 -.08 0 -.08 --.16

Cm Cm Cm Cm

M = .60 M =.85 M =.94 M = 1.0

Figure 13

m

m

I.2

.e

CL

.4

0

EFFECTS OF LEADING-EDGE SLAT

SWEEP, 45 ° t A.R., 4

ON PITCH-UP

• 4__7_ SL AT DETAIL

NACA 65AOO6"-_-t-----/_" / _ PLAIN WING
, _ ___ _-_ WING WITH

L.E. SLAT

_1 I I I I | I I I

08 0 -.08 .08 0 -.08.08 0 -.08 0 -08 -.16

Cm Cm Cm Cm

M =.60 M =.85 M=.94 M = hO

Figure 14

r



.@

Q

Q@ @@@ • • O •• _@ _ •@Q : ••• •••• @• • • • • • •
@ 0• • •

CONFIDENT_.. :. . . : .. .... "" : • - •• • •0@ • • @•@ ••
@•@ •@I • • 0• •

RECENT DESIGN STUDIES DIRECTED TOWARD ELIMINATION OF PITCH-UP

By Joseph Well and W. H. Gray

Langley Aeronautical Laboratory

INTRODUCTORY PaMARKS

a

,L

.#
O

A previous paper by Thomas A. Toll has evaluated the status of wing

research relative to the pitch-up problem. Other papers have discussed

the nature of the flow phenomena responsible for pitch-up and presented

flight experience with configurations having pitch-up. The function of

the present paper is to present the results of recent design studies of

complete configurations expressly directed toward elimination of high-speed

pitch-up.

Before proceeding with the discussion it should be stated that methods

are available from which arbitrary nonlinear aerodynamic chsracteristics

can readily be converted into calculated time histories of representative

flight maneuvers. (See ref. 1.) Such calculations obviously do not have

the value of flight tests but nevertheless are very useful in serving as

a guide in interpreting wind-tunnel data and in studying the importance

of the various factors affecting the over-all problem.

The application of the calculation method to evaluate the effective-

ness of corrective control for a given pitching-moment shape is illustrated

in figure 1.

The particular pitching-moment curve used had a region of neutral

stability. A ramp stabilizer input was applied at one degree per second.

It was assumed the pilot desired to arrest the motion at m = 8o; however,

because of reaction time delay and control lag it was further assumed that

there was a 0.5-second delay before either the control motion was stopped

or 4-degrees-per-second corrective control applied.

An important factor in determining the controllability of an overshoot

is a term proportional to the ratio of the aerodynamic moment to the air-

plane moment of inertia. For a value of this dynamic response factor of

16 (representative of an airplane primarily loaded along the fuselage and

flying at altitude at transonic speeds), it is evident that corrective

control was instrumental in appreciably reducing the overshoot although

the peak angle reached was still about 5° greater than would have been

attained with a linear pitching-moment curve and therefore undesirable.

For a dynamic response factor of 64 (representative of an airplane

primarily loaded along the wings), the motion builds up so rapidly that

corrective control is completely in reducing the overshoot.
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It should be noted that the interpretation of some of the results

to be presented in this paper are based on calculations such as these

where flight experience with configurations having similar character-

istics was not available.

The problem of tail location (from the stability standpoint) is one

of matching the stability contribution of the tail to the wing-fuselage

characteristics. The manner in which the choice of tail location might

be affected by three different types of simplified wlng-fuselage pitching-

moment curves is shown in figure 2.

With a tail-off curve characterized by a stable break at moderate

angle of attack, location of the tail so that it approaches the wing

wake with reduced tail contribution to stability in the moderate m range

will tend to linearize the stability characteristics of the complete con-

figuration. For a wing-fuselage curve with a mild destabilizing break,

the use of a somewhat lower tail with the tail contribution to stability

shown might be desired. When the wing-fuselage curve indicates a large

unstable change at moderate angle of attack, the only possibility of

securing an acceptable complete configuration lies in the use of a tail

low enough so that its emergence from the wing wake and resulting increased

stability contribution will overcome the tail-off instability.

SCOPE

The scope of the complete configurations to be discussed in this

presentation is shown in figure 3. The configurations studied were con-

ceived as having all-movable tails and the tail lengths varied from 1.2

to 1.4 wing semispans. Stability information showing effects of changes

in tail height is presented for these configurations in subsequent fig-

ures. The Reynolds numbers of the data were generally of the order of

from 3 × 106 to 4 × l06. Most of the investigations were made at high

subsonic Mach numbers, the range in which the most serious pitch-up is

usually encountered.

D

DISCUSSION

The effect of varying tail height on the pitching-moment character-

istics of an aspect-ratio-3 wing having an unswept 50-percent-chord line

is shown in figure 4. The wing had a taper ratio of 0.2 and a 4-percent-

thick airfoil. Data are presented at a Mach number of 0.80 and 0.90 for

tail heights of 0, 32, and 64 percent of the wing semispan above the wing

chord plane extended. A reference center-of-gravity location has been
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chosen for each tail height such that an initial slope -- = -0.12

was obtained at M = 0.80. (See table I.) The lift curve is shown for

reference purposes.

It is seen that, at M = 0.80, some overshoot would be experienced

at high CL for either of the two higher tails. Although the highest

tail shows an abrupt instability, it is not thought that this instability

would seriously limit the usefulness of the airplane because the pitch-up

tendency is preceded by a pronounced stable break in the moment curve

which would serve as a warning to the pilot and occurs at an angle of

attack considerably above the severe break in the lift curve and there-

fore probably well into the heavy buffet region. No pitch-up problem is

indicated for the lift range obtained at M = 0.90. Somewhat similar

results were obtained from an investigation of an unswept wing of aspect

ratio 4 and taper ratio 0.6. (See fig. 5-)

The effects of reducing the aspect ratio of a moderately swept wing

from 4 to 3 are presented in fi_are 6. Inas_ach as the lower-aspect-ratio

+_ir_ _s formed by cutting off the tips of the aspect-ratio-4 configura-

tion, the taper ratio increased from 0.60 to 0.68. Data are presented for

a Mach number of 0.90 for a tail located approximately 15 percent semispan

above and below the wing chord plane extended.

For the tail located above the fuselage, a pitch-up tendency is shown

for either aspect ratio wing coincident with an abrupt break in the lift

curve. For the aspect-ratio-4 wing, the severity of the Cm break would

indicate a fairly severe pitch-up. Reducing the aspect ratio to 3 delayed

the onset of pitch-up by about 0.1C L and the importance of the much

milder pitch-up tendency indicated is questionable in view of the probable

presence of appreciable buffet.

With the tail located below the fuselage, no pitch-up tendency is

shown for either aspect ratio.

Figure 7 illustrates the effect of taper ratio on the stability

characteristics of configurations having an aspect ratio of 3 and quarter-

chord sweep of 30 °. Data are presented at Mach numbers of 0.92 and 1.06

for a tail located on the chord plane extended and 64 percent of the wing

semispen above the chord plane extended.

At M = 0.92, regardless of tail height and taper ratio, a jog is

present in the moment curve at moderate lift coefficient. The destabi-

lizing tendencies, however, occur at a lift coefficient about 0.2 higher

for the wing having 0.5 taper and would appear to be somewhat less severe.
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For either taper ratio, an abrupt instability is present at extremely

high _ as the high tail approaches the wake. At a Mach number of 1.06,

no pitch-up problem is indicated in the lift range obtained.

The effect of tail height on the stability characteristics of a

45 ° delta wing with tips clipped to form a wing with an aspect ratio of 3

are given in figure 8. The taper ratio was 0.14 and the quarter-chord

sweep, 36.8 ° . Of the three tail positions investigated, the middle tail

was clearly the worst. For the high tail, the lift coefficient at which a

pronounced instability exists at M = 0.80 was delayed to an angle of attack

of 18° or well beyond the abrupt break in the lift curve. The chord-plane

tail had fairly acceptable characteristics at both Mach numbers. Thus for

this arrangement, it is obvious that a low tail or a very high tail repre-

sents the best choice of tail location from the pitch-up standpoint.

The effect of Mach number on the stability characteristics of a con-

figuration having a 47 ° swept wing of aspect ratio 3.5 is shown in fig-

ure 9 for tall heights of 6 and 56 percent of the wing semispan above the

wing chord plane. Figure 9 shows that, although the instability was less

pronounced for the lower tail, neither configuration had acceptable pitch-up

characteristics. Furthermore, the results show that the onset of pitch-up

is delayed to a progressively higher lift coefficient as the Mach number

is increased from 0.90 to 1.04. For the lower tall it is also evident

that the severity of the pitch-up tendency is considerably reduced at the

highest Mach number.

The effect of tail height on the stability characteristics of a

45 ° swept wing of aspect ratio 4 at a Mach number of 0.90 is shown in

figure lO. The wing-fuselage characteristics are such that, even when

the tail is placed 0.14b/2 below the fuselage, undesirable pitching-

moment characteristics are retained.

The effect of a leading-edge modification on the stability character-

istics of the 45 ° wing at M = 0.90 is presented in figure ll. The

leading-edge modification used consisted of a lO-percent chord-extension

from 65 percent semispan to the wing tip and a full-span 20-percent-chord

nose flap. The combination was drooped 6° streamwise and hinged about

the 20-percent chord line. Such an arrangement has been shown to have

favorable performance characteristics at high subsonic speeds. See
reference 2.

For a tail location above the fuselage, the use of the modified wing

delayed the onset of pitch-up by about O.IC L. The severity of the pitch-up3

however, would not appear to be altered. When the tail is placed below the

fuselage it would appear that the use of the modification would result in

fairly acceptable pitching-moment characteristics. See reference 3.

b
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The importance of localized inboard plan-form modifications on the

tall contribution to stability at M = 0.90 is illustrated in figure 12.

The inboard modifications were added to the configuration having nose

droop and chord-extenslons. Pitching-moment and tall contribution to

the stability CCm__ are plotted against angle of attack.
t

On the left-hand side of figure 12 is shown the effect of adding a

traillng-edge extension inboard of the 40-percent-semispan station. The

tail height was 0.26b/2 above the chord plane extended. It is evident

that the addition of the extension increased the severity of the insta-

bility. The reason for this increase is traceable to the highly

destabilizing effect of the trailing-edge extension on the tail con-

tribution to the stability.

On the right-hand side of figure 12 is shown the effect of a root

indentation extending inboard of the 30-percent-semispan station intersecting

the fuselage at about the 30-percent-chord line. A tail height of 14-percent

semlspan above the chord plane was used for this study. A significant

improvement in the stability characteristics is shown for the configura-

tion with root indentations. The reason for this improvement is traceable

to the stabilizing effect of the indentation on the tail contribution to

stability.

The effects of more extreme plan-formmodifications are summarized

in figures 13 and 14. Data are presented for the basic 45 ° wing of aspect

ratio 4, for a cranked wing with inboard sections swept 45 ° and outboard

40-percent-semispan sections unswept, and for an M-plan-formwing with

inboard 40-percent-semispan sections swept forward 45 ° and outboard sec-

tions swept back 45 °. Results are presented at Mach numbers of 0.80 and

0.90 and for tail heights of 0, 27, and 55 percent above the chord plane.

For the basic swept wing it has been previously shown that, because

of the nature of the tail-off characteristics, no tail location produced

acceptable stability characteristics.

From the results with the cranked wing it would appear that somewhat

better characteristics were obtained for the low tall than for the corre-

sponding swept-wing configuration. Although the high tail investigated

would not be acceptable, there was a definite improvement over the results

obtained with the swept wing and the use of an extremely high tail should

not be ruled out. The mid-tail showed essentially no improvement and had

by far the worst stability characteristics.

For the M-plan-formwing, no pitch-up is indicated for the chord-

plane tail. For the high tail, the lift coefficient at which pitch-up is

indicated is almost twice that for the swept wing at M = 0.80 and substan-

tial gains over the swept wing are also shown at M = 0.90. A somewhat
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higher tail location than that tested would, however, in this instance

also be desirable. The characteristics of the mid-tail were considerably

improved over the comparable swept-wing configuration but this tail loca-

tion still appears the least desirable of the three locations investigated.

o

o

SUMMARY OF RESULTS

Figure 15 is used as an aid in surmnarizing the results and is essen-

tially a hlgh-speed counterpart of the Shortal-Maggin boundary for wing

and wing-fuselage configurations. The configurations have been evaluated

in the Mach number range from 0.80 to 0.95, the speed range for which the

most serious pitch-up can be expected for many configurations. The points

plotted are for simple wing and wing-fuselage combinations having thick-

nesses from 3 to 6 percent streamwise. The open symbols define the

combination of aspect ratio and sweep that produce pitchlng-moment char-

acteristics that would not of themselves constitute a pitch-up problem

whereas the solid symbols represent configurations having unacceptable

tail-off pitching-moment characteristics. The half-filled symbols define

configurations which, when combined with a fairly constant tail contri-

bution to stability, would produce marginal pitch-up characteristics.

The boundary region represents wings having more or less marginal

characteristics.

For configurations having wings falling on the left side of the

boundary, caution must be exercised to avoid placing the tail in a region

of unfavorable flow characteristics. For the aspect-ratio-3, essentially

unswept wing investigated, it was not considered that a serious pitch-up

problem existed; however, for a range of high tail positions a pitch-up

tendency would be encountered at extremely high angles of attack.

For configurations falling in the boundary area, the tall must be

located so as not to aggravate but, if possible, to improve the wing

characteristics. For these wings it was generally found that a moderately

high tail location produced the most serious pitch-up tendency. A very

high or moderately low tail would give more marginal results and only a
very low tail produced good characteristics.

For wings falling above the boundary, the tail must overcome the

undesirable wing characteristics. For the rather thoroughly investigated

45 ° swept aspect-ratio-4 wing, undesirable pitch-up would probably be

present at all rational tail positions. The use of wing "fixes" com-

bined with a very low tail produced an acceptable configuration for this

wing. The use of localized plan-form modifications and composite plan

forms offers the possibility of greater latitude in tail location for

wings of this type and warrant further study.

_o
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Finally, it should be remembered that only the constant-speed pitch-up

has been treated in this paper. Large and abrupt changes in pitching

moment withMach number, however, can also produce severe pitch-up and

should be avoided if possible.
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TABLE I.- REFERENCE CENTER-OF-GRAVITY LOCATIONS

81_ = -0.12 at M = 0.8; low CTI

]

Aspect IFigure ratio At/4, deg )_ Remarks h t b/2

4 3 12.6 o.2o o

4 3 12.6 .20 o. 52

4 3 12.6 .20 .64

5 4 o .60

5 4 o .60

5 4 o .60

6 4 32.6 .60

6 4 32.6 .60

6 3 32.6 .68

6 3 32.6 .68

7 3 3O .20

7 3 30 .20

7 3 3o .50
7 3 3o .5o

3 36.8 .143 36.8 .14

8 3 36.8 .14

9 3.5 47 .20
9 3.5 47 .20

i0 4 45 .3o _

io 4 45 .3o

IO 4 45 •30

ii _ 45 .30 Chord extension and nose droop

ii 4 45 .30 Chord extension and nose droop

12 4 _5 .30 Inboard modification

12 4 45 .30 Inboard modification

13 4 45 .30 ]Fuselage differs slightly f

13 4 45 .30 _ from that used in fig-
[13 4 45 .5o J ures lO-12

15 4 45 ° inboard; 0 ° outboard .50 Cranked plan form

13 4 45 o inboard; 0 ° outboard .30 Cranked plan form

15 4 45 ° inboard; 0° outboard .30 Cranked plan form

14 4 -45 ° inboard; 45 ° outboard .30 M plan form

14 4 -45 ° inboard; 45 ° outboard .30 M plan form

14 4 -45 ° inboard; 45 ° outboard .50 M plan form

Reference

center of

gravity

O. 04_

.i_

.21_

0 .14_

•27 .16_

.55 .25-g

-.14 .24_

.14 .25w

-.17 .2_-d

.17 .2_g

0 .1Tg

.64 .36_"

0 .15_

.64 .52_

0 .igg

•32 .28w
.64 • 52"g

.06 .35_

• 56 .4og

-. 14 .36_

•14 .9_
.26 .37"E

-. 14 •36_

.14 •30_

.14 .36_

.26 -35"_

0 .29_

•27 .34_

-55 .4OF

0 .iI_

•27 .18_

•55 .24_

0 .04W

.27 . Ii_

•55 .17W
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SOME AERODYNAMIC CONSIDERATIONS GOVERNING THE STATIC

STABILITY OF CRUCIFORM MISSILES

By Donald D. Baals, M. Ieroy Spearman, and David G. Stone

Langley Aeronautical Iaboratory

INTRODUCTION

The static stability and control requirements governing the design

of cruciform missiles are broad and complex, but, in general, there are

two basic requirements of overriding importance: the first, to maintain

linearity of the pitching or yawing moments to sufficiently high angles

of incidence and, second, to minimize the induced rolling moment

resulting from roll attitude or control deflection. This paper presents

some of the available methods for predicting missile stability character-

istics and will endeavor to indicate how to minimize adverse aerodynamic

effects.

At the 1951 NACA Conference on Aerod_mamic Design Problems of Super-

sonic Guided Missiles, a rather complete coverage of the basic problems

of the stability of cruciform missiles was presented wherein it was shown

that the longitudinal and induced roll characteristics are largely under-

standable and predictable on the basis of existing aerodynamic theory.

For missile configurations the assumption was made that the vortex sheet

trailing the forward surfaces is completely rolled up in the region of

the tail. The resulting vortex locations and tail loads can then be

predicted by existing techniques.

This general approach has not changed significantly. Recent work

has added to the knowledge of missile vortex fields (ref. 1), and limited

advances in simplifying assumptions and calculative techniques have been

made. It now appears possible by rather simple techniques to predict the

general variation and the order of magnitude of the pitching and induced

rolling moments for a relatively wide range of missile configurations.

LONGITUDINAL CHARACTERISTICS

Figure 1 is an illustration of the simplified flow model considered

in the analysis which follows. It is assumed that the basic-body, body-

wing, and body-tail characteristics can be estimated by slender-body and

linear theory. In order to determine the interference effects of the

forward wing on the trailing surface, the assumption is made that the
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trailing vortex sheet behind each wing panel is concentrated into one

discrete vortex. The position of each vortex with respect to the tail

is approximated for zero roll by simply assuming that the vortex trails
in the streamwise direction. It is then possible to calculate the down-

wash distribution in the plane of the tail and the corresponding tail

loads. This procedure has been systematized and compared with experi-

ment in reference 2.

i

The procedure assumed is of necessity over-simplified and embodies

the inherent limitations of slender-body and linear theory along with

known discrepancies in the assumption of the vortex field. It is known,

for example, that the body-alone characteristics are nonlinear and are

predicted by slender-body theory only for bodies at low angles of attack.

In calculating wing-tail interference, the assumption that one fully

rolled up vortex is discharged from each wing panel holds in the majority

of configurations. The work of Spahr and Dickey (ref. i), however, shows

that for panels of high aspect ratio the flow behind the panel may con-

sist of a flat sheet of several vortices; and for high angles of attack,

body vortices appear in the flow. In spite of the rather gross assump-

tions involved, however, the results provide, for moderate angles of

attack, a qualitative picture which fits the pattern of experiment.

Figure 2 shows the range of missile configurations investigated.

It includes configurations with the smaller surfaces forward or rearward

and considers both subsonic and supersonic characteristics.

Figure 3 shows the center-of-pressure variation with angle of attack

for a representative group of missile configurations from figure 2. The

circles are experimental results and the dashed lines are calculated

results based on the aforementioned procedures. It will be noted that

the correlation is relatively good - especially with relation to the

center-of-pressure shift with angle of attack.

With the simplified flow model and the calculative techniques as a

basis, it is possible to propose missile configuration requirements for

minimizing the longitudinal center-of-pressure travel with angle of

attack. An analysis of results indicates that one of the most important

parameters governing the center-of-pressure shift is the ratio of the

spans of the two lifting surfaces.

In figure 4 is shown, as a function of span ratio, the experimental

variation of center-of-pressure shift in terms of body length for an

angle-of-attack increment of i0 °. The "span ratio" here is defined as

the ratio of the small to the large surface. The numbers within the

symbols refer to the configurations in figure 2. Configurations i to 8

are limited to subsonic characteristics; configurations 9 to 21 are for

Mach numbers in the range from approximately 1.3 to 2.0. The center-of-

pressure shift is rearward except for those symbols with flags. It will

4



.. ... • .: • .• **::**:***:%--: :- ... • •
• • • • • • • • 00 • •• • •

COm_D_CIL_: " - --- • • :- :_ :.-6• eO eel • • •e •e • go

w

o_

Q

P

ram-

be noted that the largest center-of-pressure shift occurs for span ratios

near unity.

Figure 5 shows the calculated center-of-pressure shifts corresponding

to the experimental results of figure 4. It will be noted that the calcu-

lated results correlate very well with the experimental values, and the

same general effects of span ratio are noted. Also shown in this figure

is the calculated center-of-pressure variation for a missile configuration

in which the span ratio is systematically varied. The calculations are

made for wing and tail with 60 ° delta plan form at a Mach number of 2.0.

Note that the peak center-of-pressure travel occurs when the rear sur-

face is about 0.9 of the span of the forward surface or, in other words,

when the tail span is approximately equal to the vortex span.

Although span ratio appears to be the primary parameter from the

standpoint of center-of-pressure shift, the scatter at any one value of

span ratio indicates the importance of other parameters. From analysis

of experimental data and use of the simplified calculative techniques,
these parameters are indicated to be:

(a) Panel aspect ratio and plan form

(b) Ratio of body diameter to wing span

(c) Relative distances between the forward and rear surfaces

(d) Fineness ratio of the body alone

In general, for a given configuration holding span ratio and aspect

ratio constant, the effect of plan form on center-of-pressure shift is

relatively small. The effective panel aspect ratio _A does have a

significant influence, the larger center-of-pressure shifts occurring

for the lower values of effective aspect ratio.

There appears to be an effect of spacing between the forward and

rearward surfaces associated with the displacement of the vortex at the

tail. The maximum center-of-pressure shift for span ratios near 1 appears

to occur for a wing-tail spacing of about 2 to 3 spans. Shorter spacings

can reduce the center-of-pressure shift but at a sacrifice in tail

efficiency.

Another parameter to be considered is the ratio of body diameter to

wing span. If this ratio is large, the position of the wing trailing

vortices are greatly influenced by body cross-flow characteristics; and

secondly, the nonlinear force characteristics of the body alone become

evident in the complete configuration characteristics.

For configurations where the wing-tail interference effects are

small, the body-alone characteristics may be the primary factor governing
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the center-of-pressure shift. In a previous paper, Edward W. Perkins

and David H. Dennis have considered the nonlinear body characteristics

with angle of attack and have shown that these are a function of nose

shape and fineness ratio, along with other factors. Related character-

istics have been considered in reference 3.

The pitching-moment characteristics of a series of ogive cylinders

of fineness ratio from 14.8 to 19.1 are shown in figure 6 from tests in

the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number

of 2.0 (ref. 4). The Reynolds number based on body diameter was 750,000.

The pitching-moment coefficient is based on the chord and area of a

typical wing that was added later to provide a complete missile. The

center of moments has been adjusted for each fineness-ratio body to pro-

vide the same low angle-of-attack stability. Note that the linearity of

the moment curve is greatly influenced by fineness ratio, and that the

shortest body (fineness ratio of 14.8) has the least departure from the

low angle-of-attack stability.

Figure 7 shows the stability characteristics of a canard missile

configuration utilizing the various fineness-ratio bodies shown in fig-

ure 6. The wing and controls had leading-edge sweeps of 70 ° with a span

ratio of 0.46. This would result in low canard-wing interference. Data

are presented for control deflections of 0° and lO °. The center of

moments has been adjusted such that each configuration has the same

static stability at low angles of attack. Note that the long body is

linear only to about lO ° and has zero moment at approximately 20 ° angle

of attack. The short body (fineness ratio of 14.8) has the most linear

characteristics and is stable throughout the test angle-of-attack range.

The change in the complete model stability for these configurations

stems basically from the body-alone characteristics. The canard-wing

interference was negligible as found by agreement between the complete-

configuration tests and summation of the individual components.

In figure 8 is shown the control characteristics for the fineness-

ratio-15.7 configuration at a Mach number of 2.0. Note that, for a

control deflection of 30 ° , the pitching-moment variation with angle of

attack is linear up to a trim angle of 12° . The corresponding _/_

curve shows a gradual decrease in control effectiveness with no severe

nonlinearities. For the fineness-ratio-14.8 configuration, which basi-

cally has the most linear moment characteristics, a 30 ° control deflec-

tion will trim the model at approximately 18° angle of attack. The

static stability was adjusted in each case to give the highest usable

trim angle of attack. Thus, if the basic configuration hasksufficiently

linear characteristics, high trim angles may be obtained with relatively
small controls.

The Mach number characteristics of some free-flight missile configu-

rations with low span ratios are shown in figure 9. The aerodynamic-
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center location through the Mach number range is shown for a series of

missiles of two different fineness ratios with the control surfaces

either forward or rearward. The short bodies show the least center-of-

pressure travel. The only significant center-of-pressure travel is

noted for the longest body in the transonic speed range.

To summarize the situation with relation to the longitudinal char-

acteristics of missile configurations, it has been shown possible for a

rather wide range of configuration to predict for zero roll the general

variation of the nonlinear moment characteristics for moderate angles of

attack. The most important parameter governing the nonlinearities is the

span ratio of the lifting surfaces. In general, the span ratio should

not be near unity. That is, the tail span should not be of the same

order as the wing vortex span. The effect of body-alone characteristics

is shown to be of importance. If the body diameter is large with rela-

tion to the wing span, the body-alone characteristics can govern the
complete configuration.

LATERAL CHARACTERISTICS

t

m

The discussion thus far has been limited to the longitudinal char-

acteristics of missile configurations. From the sy_netry conditions of

a cruciform missile, however, the same general anaS,vsis and conclusions

will apply for the characteristics in the side-force plane. There

remains, however, the problem of induced roll produced by the reaction

of the trailing wing to the vorticity shed by the forward control surfaces.

Sherman Edwards and Katsumi Hikido of the Ames Aeronautical

Laboratory, in an unpublished analysis, have attacked the problem of

induced roll with essentially the same basic approach that has been used

in the analysis of the longitudinal characteristics, but with the dif-

ference that the load distribution on the tall resulting from the vortex

field is integrated to give tail rolling moment. The basic aerodynamic

model here assumes a deflection of the vertical control surfaces with the

unyawed model at an angle of attack.

Because the induced roll is critical to the spanwise load distri-

bution on the tail and because of the fact that the vortices in the

angle-of-attack plane trail in a complex path to the rear, a more pre-

cise method is employed in establishing the position of the vortices in

relation to the tail. A step-by-step graphical analysis is made which

includes image vortices in the body and considers the movement of the

four free vortices due to mutual interference and to the potential cross-

flow around the body.

Figure i0 shows the calculated values and the experimental results

for the tail rolling moment different missile configu-

rations with the control Looking from the rear, this
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figure shows the calculated position of the vortices in the plane of

the tail for increments in angle of attack of 4 ° . For these vortex

positions, the induced tail rolling-moment coefficients based on tail

area and span have been calculated and are shown by the dashed curve.

Good agreement is shown with the experimental values of tail rolling

moment represented by the symbols.

It will be noted for the two configurations on the right that, when

the body diameter is large with relation to the vortex span, the vortex

on the underside quickly passes around the body and becomes located in

the second quadrant. For such conditions, the rolling-moment coeffi-

cient reverses direction and tends toward positive values for the con-

figuration analyzed. It should be noted that the i_iduced roll is small

for configurations where the span ratio is small. In addition, there

has been found an effect of longitudinal spacing between the forward

and rear surfaces. The shorter spacing reduces the displacements of

the vortices at the tail and tends to minimize the induced roll.

The linearity of the rolling-moment-coefficient curve is not

important in itself. The major problem, however, is whether the magni-

tude of the induced rolling moments is sufficiently small to be within

the rolling power of the ailerons.

Figure ii is an experimental contour plot showing lines of con-

stant rolling-moment coefficient for conditions of combined pitch and

yaw for zero control deflection. These data are from tests in th_

Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.0

of a delta-canard configuration (fineness ratio of 15.7) utilized in

reference 4. The rolling moment is zero when _ = _ (a roll angle of

45 ° ) since the configuration is then symmetrical with respect to the

relative wind. The maximum roll occurs for a roll angle of approxi-

mately 22_ _ - approximating a sine wave variation.

A 20 ° differential deflection of the two tip ailerons (see ref. 5

for wing aileron configuration) of this configuration produces a

rolling-moment coefficient of about 0.01 for the range of _ and

considered. For the untrimmed condition assumed (5H = 8V = 0), the

rolling moment produced by the ailerons is sufficient to overcome the

induced roll for all combinations of _ and _ except for the small

shaded area shown.

Figure 12 shows the experimental variation of induced tolling
moment that occurs when the vertical canards are deflected while the

angle of attack is varied at zero sideslip. The results show that the

induced roll due to control deflection can be either positive or nega-

tive and of the same order of magnitude as for the controls undeflected.
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This indicates regions where the induced roll may be zero or my be

beyond the range of some types of roll control.

Recent experimental information is available to show the effect

of combined pitch and yaw with controls deflected. Figure 13 shows the

experimental effects of sideslip on the induced roll variation with

angle of attack for the lO ° vertical canard deflection shown in fig-

ure 12. The nature of the induced roll is shown to vary considerably

in sign and magnitude as the sideslip angle is changed. These large

and varied changes in induced roll for cases of combined pitch and yaw

are indicative of the complex control problems that exist for canard

cruciform missiles, even though the canard surfaces are small.

These induced roll problems for configurations with controls for-

ward might possibly be circumvented through the use of trailing-edge

controls on the rear panel or through the use of tail rearward designs

in contrast to a canard configuration. Any gains to be had by these

means, however, might result in other problems such as a decrease in

longitudinal control effectiveness or maximum trim. angles attainable.

In summary, the problem of induced roll for cruciform missile con-

figurations is important, for rolling moments can be produced which are

beyond the range of roll control. The simple case of induced roll due

to the deflection of forward controls with the body incidence limited

to one plane appears to be understood and can be adequately predicted.

The practical problem of induced roll for conditions of combined pitch

and yaw using control deflections required to trim is more complex.

This problem merits considerable further experimental and analytical

study.
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EXAMINATION OF RECENT STABILITY DERIVATIVE DATA

By Frank S. Malvestuto, Jr., and Richard E. Kuhn

Langley Aeronautical Laboratory

INTRODUCTION

A number of previous papers have reported on the effects of vari-

ous aerodynamic parameters on the longitudinal motions of airplanes and

missiles. In the present paper attention is directed to the aerodynamic

parameters, the so-called stability derivatives that affect the lateral

behavior of airplanes and missiles. The discussion is centered on three

important quantities CZ6 , the effective-dihedral derivative, Cn_ , the

directional-stability derivative, and CZp , the damping-in-roll deriva-

tive. These quantities are considered for a large angle-of-attack range

at subsonic speeds. A few remarks will also be made on the sideslip

derivatives at zero lift in the supersonic speed range.

DISCUSSION

J

For the subsonic speed range, the lateral-stability derivatives

have been the subject of intensive research by the Langley high-speed

7- by 10-foot tunnel. Particular attention has been paid to the varia-

tion with Mach number in the high angle-of-attack range that is repre-

sentative of flyable attitudes of many high-speed airplanes. The

effective-dihedral and the directional-stability derivatives of the

three complete models sketched in figure 1 are presented in figures 2

and 3. Model I is equipped with a 30° sweptback wing of aspect ratio 3;

model II has a _9o swept wing of aspect ratio 4; and model III (repre-

senting the X- 9 airplane) is equipped with a 60 ° swept wing of aspect

ratio 2. To the right of each sketch in figure 1 is a plot of the model

llft coefficient against angle of attack for two available Mach numbers

indicative of the low and high subsonic speed range.

The effective dihedral derivative C%_, expressed here in radlans,

for the three models is presented in figure 2 for the range of angle of

attack and the Mach numbers indicated in figure 1. It is important to

note the highly nonlinear variation of this derivative with angle of

attack and the pronounced effect of Mach number on these variations.

This nonlinear behavior is strongly dependent upon the separation of

flow from the wings, particularly in the vicinity of the tips, and
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commences at angles of attack at which these swept wings by no means com-

pletely stalled. Note that model I retains its positive effective

dihedral __that is, -Cz_ _ through the angle-of-attack range and increasing

Mach number tended to increase this quantity at the higher angles.

Models II and III have the more typical variation of CZ_ with angle of

attack and show the decrease to zero and to negative effective dihedral

at the higher angles. Configurations having this latter type of varia-

tion of CZ_, and the variation of the derivative Cn_ to be discussed

later, could easily be flying at angles at which one or the other of these

derivatives become zero. The manner in which these zero values affect the

lateral motions of airplanes will be discussed in the following paper by

John P. Campbell with emphasis on the Cn_ derivative. The point to be

observed from the data presented here is that increasing Mach number may

change the angle of attack at which derivatives become zero. As an illus-

tration, the results of model II show that increasing Mach number increased

the angle at which CZ_ and Cn_ become zero; whereas, for model III, the

Mach number effect is reversed; that is, increasing Mach number decreases

the angle of attack at which zero values occur.

The effects of angle of attack and Mach number on the companion

Aerivative Cn_ are shown in figure 3. At the higher angles the varia-

tion of this derivative depends not only upon the tail effectiveness3

that is, the difference between the tail-on and tail-off results, but

also may be greatly influenced by the variation of the wing-body charac-

teristics. As an example, for models I and II the increase in the sta-

bility of the wing-body combination at the higher Mach number tends to

compensate for the reduction in tail effectiveness shown by the decrease
in the increment between the tail-on and tail-off results. For model III,

however, although the tail effectiveness remains appreciably constant up

to large angles of attack, the decrease in the stability of the wing-body

combination causes a reduction in Cn_ for the complete model and is the

primary cause of this reduction. It is also of interest to point out for

this model that the angle of attack at which C Z and Cn_ tend to zero

is approximately the same and decreases with increasing Mach number. This

similarity of the action of Mach number on CZ_ and Cn_ is not surprising

since for this model the wing-body characteristics, which in the main usu-

ally control CZ , are also the controlling influence for Cn_ as was

indicated previously. These results emphasize the need for having,

through the Mach range, not only proper tail effectiveness, but equally

important, proper wing-body design, incorporating satisfactory directional

characteristics.
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The effects of horlzontal-tail height on the directional-stability

derivative and also on the effective-dihedral derivative for
Cn_ CZ B

model I are shown in figures 4 and 5. The curves on the left of each

figure represent horizontal tail-off data_ the next set of curves are for

the horizontal tall in the low position. This arrangement is the one con-

sidered in the previous figures. The data to the right are for the hori-

zontal tall in highposition. The expected increase in the directional-

stability derivative with the tail in the high position is clearly evident

from these results. For the effective-dihedral derivative CZ_ , the relo-

cation of the tail from the low to the hlghposition produced again, as

expected, an increase in the negative value of the derivative.

There is one additional point related to the sideslip derivatives

that deserves consideration. In attempts to devise "optimum fixes" to

alleviate the pitch-up conditions for various airplanes, consideration

has also been given to the effect of these same fixes on the lateral

derivatives. The results available so far are very limited and no spec-

ific conclusion can be made. The data of figure 6, however, illustrate

for one configuration, model III, the effect of a leading-edge chord-

extension on the Cn_ and CZ_ derivatives. At the lower Mach number

the effect of chord-extenslons in producing a linear pitchlng-moment

variation is clearly evident, but the effect of these chord-extensions

on the corresponding Cn_ and CZ_ derivatives are relatively insignif-

icant. At the higher Mach number, although unfortunately the available

chord-extension-on data are somewhat incomplete, the small effect of these

chord-extensions on the derivatives is still evident, the trend for the

higher Mach number being almost identical to that shown for the lower

Mach number. It should be remembered, of course, that CZ_ did not show

any pronounced breaks until angles of attack approaching stall were
reached.

So far, the discussion of the lateral derivatives for the subsonic

speed range has been directed toward the static effects. Recently, the

characteristics in steady roll of several wings at high angles of attack

in t_e subsonic speed range have been investigated experimentally. For
a 49 swept-wing--body arrangement, the variation of the damping-in-roll

parameter CZp with angle of attack and Mach number is shown in figure 7,

together with the corresponding lift variations. It can be seen that at

a Mach number of 0.2 the wing maintains a reasonable amount of damping

at all angles of attack up to the stall. However, as the Mach number is

increased, the damping-in-roll ability of the wing seriously diminishes

until at a Mach number of 0.91 instability in roll is indicated at an

angle of attack of ll °. Note also that this result occurs although the

llft is still increasing at this angle of attack. Similar effects occur
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for wings of other plan forms as indicated in figure 8. It will be noted

here that all these wings indicate a serious loss in damping effectiveness

in about the same s_ngle-of-attack range. Note also that, with the excep-

tion of the unswept wing, this loss occurs although the over-all lift

coefficients of the wings are still increasing. For the unswept wing,

this loss in damping occurs at angles of attack corresponding to the stall,

as would be expected.

One additional important point connected with these regions of poor

damping is that the variation of rolling moment with rolling velocity may

be very irregular as shown in figure 9. Under these conditions it is

difficult to determine a representative value of the damping coefficient.

The data shown in figure 9 are for a Mach number of 0.85. The variation

of the rolling-moment coefficient with rolling velocity shown by the dashed

curve is representative of the linear stable slope characteristic of the

low angle-of-attack range. At an angle of attack of ii °, however, the vari-

ation is nonlinear and, in the case of the 32.6 ° swept wing, it is unstable

over a very wide range of pb/2V. The hysteresis shown in the data for the

unswept wing and the 60 ° triangular wing would certainly give rise to some

undesirable dynamic-stability characteristics and possibly complicate the

design of any automatic stabilizing equipment. The instability at small

values of pb/2V and the associated hysteresis loops also may have some

relationship to the wing-dropping problem.

Some consideration has been given to the use of fixes in an attempt

to reduce the loss of damping in roll. Since a loss in damping is asso-

ciated with tip stalling, which is also a contributing factor in producing

pitch-up, tests were made to determine whether devices which are known to

alleviate pitch-up would also improve the damping in roll. The effect of

a fence on the damping characteristics of the 45 ° swept wing is shown in

figure i0. The fences were full chord and were located at the 0.65 b/2

station. For the Mach number of 0.85, the fences delayed the pitch-up

by some 5° and decidedly improved the damping. At a Mach number of 0.91,

however, the effect of the fences on either the damping or the pitch-up

decreased considerably. Reference i contains a more complete discussion

of the damping-in-roll characteristics of swept wings at high angles of

attack and high subsonic speeds. Included also in this report is a simple

procedure for estimating the load distribution in roll provided the corres-

ponding angle-of-attack load distribution is known.

The preceding discussion of the lateral-stability derivatives at high

angles of attack has of necessity been based wholly on experimental data.

This discussion has been confined to the subsonic speed range. In the

supersonic speed range, recent theoretical work applied to three complete

configurations has demonstrated the ability of theory to predict the

lateral-stability derivatives at low angles of attack. The variations of

the derivatives and with Mach number for these three
CZ_ Cn_

ol
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configurations are shown in figures ii and 12. The theoretical results

are presented for the complete arrangement, vertical-tail alone, and body

or wlng-body alone. The experimental results, the dark circles, are for

the complete arrangement. The comparison of theory and experiment indi-

cates that the level and trend of the experimental variations are pre-

dicted by the theory. For one of these airplanes a thorough study and

prediction of all the major longitudinal and lateral derivatives has been

made and is reported in reference 2.

CONCLUDING

It has not been possible to consider all the recent information on

lateral-stabillty derivatives. However, a bibliography of papers con-

taining lateral-stability-derivative data has been attached. Reference 3

also contains a large number of references not included here. The fol-

lowing remarks are offered as an indication of the present general status

of the stability-derivative field.

At low angles of attack within the subsonic speed range below the

critical Mach number, it is felt that available theory permits fairly

reliable predictions of the lateral-stability derivatives.

At the higher angles of attack in the subsonic and transonic ranges,

the unpredictable, nonlinear characteristics of the derivatives stress

the necessity for determining experimentally for a particular configura-

tion the derivatives needed in the estimation of stability.

In the supersonic range at low angles of attack, combined theoretical

and experimental studies have produced useful aerodynamic-derivative data.

For the complete configurations so far considered, derivative estimates

made for these conditions have met with a good measure of success.

In the supersonic range at high angles of attack there are no data
available.
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DESIGN TRENDS IN RELATION TO AIRPLAHE LATERAL STABILITY

By John P. Campbell

Langley Aeronautical Laboratory

II_I_RODUCTION

This paper deals with two lateral stability problems - unsatis-

factory damping of the Dutch roll oscillation, which is common to

practically all current high-speed airplanes; and the directional

divergence at high angles of attack that has recently been encoun-

tered with some highly swept designs. In the discussion of the Dutch

roll oscillation, one of the approaches now being made by the National

Advisory Committee for Aeronautics to improve the damping is described.

In the case of the new and relatively unfamiliar problem of directional

divergence, the problem itself is described and some possible solutions

to the problem are discussed.

DUTCH ROLL OSCILLATION

The existence of poorly damped Dutch roll oscillations for virtu-

ally every current high-speed airplane has led to increasing use of

artificial stabilizing devices such as yaw dampers in an effort to

provide adequate stability. In most cases, these devices have proved

satisfactory, but their use has led to increases in cost, weight,

complexity, and maintenance problems. The armed services and the

airplane manufacturers are therefore becoming increasingly concerned

about this problem and have expressed interest in means of obtaining

satisfactory Dutch roll stability without resort to complicated arti-
ficial stabilizing devices.

One of the fundamental reasons for poor inherent stability seems

to be that very little consideration is given to dynamic stability in

the early stages of design. That is, the basic design of the airplane

is determined from other considerations and attempts are made later to

improve the _vnamic stability by the minor changes in the configura-

tion which are then permissible. The NACA is now making a study to

determine how much improvement in Dutch roll stability might be

obtained by incorporating in the basic design of an airplane features

which are conducive to good stability. (See ref. 1.)
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Effect of Wing Plan Form

As a preliminary step in this study, calculations were made to

establish more clearly the causes of the poor Dutch roll stability of

current designs. The configurations considered in the preliminary

study are shown in figure 1. These configurations form a systematic

series covering a range of sweep and aspect ratio.

Some of the results of stability calculations for these four

configurations are shown in figure 2, which is a conventional plot

of damping against period of the Dutch roll oscillation. The

hatched line represents the present service requirement for damping,

with values below the line being satisfactory. There are, of course,

other factors such as roll-to-yaw ratio which must be considered in

an over-all evaluation of lateral flying characteristics but for

simplicity the present discussion will deal only with the period

and damping.

Results are shown on this plot for each of the four configura-

tions in three flight conditions: for a Mach number of 0.75 at sea

level and at 50,000 feet and for a moderate lift coefficient at sea

level. For the Mach number 0.75 sea-level condition, the four con-

figurations have about the same period and damping because they were

designed to have equal tail effectiveness and because, for the low

lift coefficient involved (0.04), the changes in wing plan form do

not appreciably alter most of the stability derivatives. As the lift

coefficient is increased to a moderate value, however, the effects

of wing plan form begin to become evident and the 45 ° swept-wing

design is definitely less satisfactory than the other three. For

this same llft coefficient at 50,000 feet (which corresponds to a

Mach number of 0.75), all the designs are unsatisfactory and the

swept designs are especially so.

Analysis has shown that the decrease in damping in going from the

aspect-ratio-6 unswept design to the 45 ° sweptback design can be

accounted for by changes in three or four of the more important

stability derivatives. If the sweepback is held at 45 °, only one of

these derivatives can be modified appreciably by other changes in the

geometry of the airplane. This derivative is CZ_, the rolling

moment due to sideslip, which can be varied by changes in wing dihedral.

Calculations for the 45 ° swept design showed that the sea-level condi-

tions could be made satisfactory by the use of 5° negative wing dihe-

dral but the damping for the altitude condition was still very

unsatisfactory.
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Effect of Mass Distribution

Since it did not appear feasible to obtain adequate damping by

modifying the geometry of the 45 ° swept configuration to give it more

favorable stability derivatives, attention was given to the possibility

of altering the mass characteristics of the airplane to improve its

stability. The pronounced effect of the product of inertia on Dutch

roll stability has, of course, been known for some time. luorder to

get a large beneficial effect from this source, a configuration was

laid out which would have a more favorable inclination of the principal

axis of inertia and more favorable values of the rolling and yawing

moments of inertia. A profile of the resulting design is shown on the

right in figure 3, compared with the more conventional profile origi-

nally assumed for the 4_ ° swept-wing design. For the conventional

arrangement, the principal axis of inertia is inclined downward about

3 ° with respect to the wing because of the relatively high location of

the tail assembly and fuselage at the rear of the airplane. This nega-

tive inclination of the principal axis of inertia tends to produce poor

damping of the lateral oscillation. The modified arrangement has a

2° upward, or favorable, inclination of the principal axis of inertia

brought about by the use of an underslung scoop inlet w_th the engine

low at the rear and with a lower location of the rear end of the fuse-

lage and tail surfaces. The rolling inertia factor k_ was reduced

from O.l_ to O.10 and the yawing inertia factor k_ was increased

from 0.32 to 0.40 by shifting weight from the wing to the fuselage.

The effect of these three changes on the stability of the 45 ° swept

configuration for the two unsatisfactory flight conditions is shown in

figure 4, which is another period-damping plot.

In figure 4, the two different mass distributions are indicated by

the two profiles from figure 3. The original profile is dark and the

modified profile light. The modified configuration has much better

damping characteristics than the original configuration for both of

these flight conditions and meets the present period-damping require-

ment. The figure also shows results for a third condition, Mach num-

ber 2 at 50,OOO feet. These results show that the change in mass dis-

tribution also provided satisfactory stability for this supersonic-

speed, high-altitude condition.

Of course, it should not be concluded from the results for this

one hypothetical airplane that this procedure is a cure for the Dutch

roll oscillation troubles of all designs; but the results do emphasize

the fact that pronounced improvements in Dutch roll damping can be

obtained in some cases by careful attention to mass distribution during

the early stages of design.
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DIRECTIONAL DIVERGENCE

Bell X-_ Research Airplane

Consider now the relatively new problem of directional divergence

at high angles of attack. Such divergences were first noted in Langley

free-flight tunnel tests of models of new highly swept fighter airplane

designs. Recently, in full-scale flight tests of the Bell X-_ airplane

with 60 ° sweep, directional divergences at hlgh angles of attack were

also encountered. (See ref. 2. ) These divergences are directly related

to the decrease in the directlonal-stability parameter Cn_ at high

angles of attack discussed by Frank S. _lvestuto in the preceding

paper. To illustrate this point let us take the case of the X-_ and

see in figure _ what the variation of Cn6 with lift coefficient is for

this airplane with 60 ° sweep. Also plotted in figure 5 is the effective-

dihedral parameter -C_ which is another important stability parameter

affecting the directional divergence. There are other factors such as

the yawing moment due to rolling Cnp and the yawing moment due to

aileron deflection, which affect the directional characteristics, but

these parameters Cn_ and -C_ appear to be the most important ones

affecting the directional divergence. Both the directional stability

and the effective dihedral are positive over the low and moderate llft

range but both drop to zero at a lift coefficient about 0.1 below the

stall, and at the stall Cn_ is highly negative or unstable. The

directional divergences encountered in flight tests of the X-_ occurred

at lift coefficients approximately where these parameters dropped to

zero.

In the preceding paper, Frank S. Malvestuto showed that for the

X-_ airplane both Cn_ and -C_ dropped to zero at progressively

lower angles of attack as the Mach number was increased. Presented

in figure 6 are some flight-test data for the X-_ airplane which verify

those force-test results. Ia this figure the angle of attack at which

directional divergence was encountered in flight tests of the airplane

is plotted against Mach number (circles). The solid line, which repre-

sents the angles of attack at which Cn6 dropped to zero according to

force tests of the X-_, is in general agreement with the flight data.

These results indicate that the dlrectional-divergence problem for the

X-_ becomes more serious at the higher Mach numbers.

Presented in figure 7 is a flight record for a divergence that

occurred at a Mach number of 0.66. In this figure, the angle of attack

(solid llne) and the angle of sideslip (dashed llne) are plotted against

oQ
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t_me in seconds. The maneuver which the pilot was to perform during

this test was a 2g push-over, pull-up maneuver. First, a push-over to

about zero g was made, then the pull-up. Because of the pitch-up tend-

ency of the X-5, the airplane reached a higher angle of attack than had

been intended. At this high angle of attack A the airplane suddenly
diverged in sideslip to an angle of about 30 _ and then rolled off into

a spin.

my

Delta-Wing Configuration

As another example of the directional-divergence problem, let us

now take the case of a 60 ° delta-wlng configuration tested in the

Langley free-flight tunnel. The stability parameters for thls model

are shoe in figure 8. For this model, the effective-dihedral param-

eter -C_ remained positive over the llft range and even at the stall;

a characteristic which should reduce any tendency toward directional

divergence. The static directional stability or Cn_ characteristics

of this model, however, were very poor. The parameter CnG was low at

low and moderate lift coefficients and became negative at a lift coef-

ficient well below the stall. Another unsatisfactory characteristic

that cannot be seen from a plot of this type was the variation of

yawing-moment coefficient with sideslip angle for this configuration.

In order to illustrate this point, let us take the condition where

CnG is zero and see in figure 9 what the variation of yawing-moment

coefficient with sideslip angle looks llke. For small angles of side-

slip, the model is neutrally stable, but at about 5 ° sideslip, a sharp

destabilizing break occurs. Thls nonlinearity is apparently associated

with the vortex flow from the wing-fuselage combination. When the model

sideslips, the vertical tail moves into an unfavorable sidewash field

created by the vortex flow and loses effectiveness. In flight tests of

this model at high angles of attack, violent directional divergences
were obtained.

In figure i0 are shown the results of some of the attempts made

to eliminate this divergence for the delta-wing model. Figure l0 is

the plot of yawing-moment coefficient against angle of sideslip for the

basic design (solid line ) and for various modified arrangements (dashed

lines).

The first modification considered was an increase in tail size as

shown by the dotted lines in the sketch. This large tail provided sta-

bility at low angles of sideslip but a sharp destabilizing break still

occurred at about 5° sideslip; so the model was about as unstable in thls

range as before. In flight tests of the model with this large tail, the
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directional divergence was delayed to a higher angle of attack but it

still occurred at angles of attack below the stall. The further addi-

tion of midspan leading-edge slats provided a small improvement at low

angles of sideslip and a large improvement at high angles of sideslip

so that the over-all effect was a stable and fairly linear variation

of yawing-moment coeTficient with sideslip over the sideslip range.

The slat apparently interrupted the vortex flow which was causing the

destabilizing break in the yawlng-moment curve. In flight tests of the

model with both the large tall and the leading-edge slat, no directional

divergences were encountered, even at the stall.

e

CONCLUDING REMARKS

The recent NACA work on the problems of unsatisfactory damping of

Dutch roll oscillations and of directional divergence at high angles of

attack can be summarized briefly as follows:

i. Improvements in damping of Dutch roll oscillations can be

obtained without resort to artificial stabilizing devices by careful

attention to mass distribution during the early stages of design.

2. The directional divergences at high angles of attack associated

with highly swept designs can be eliminated in some cases by the use of

adequate-size vertical tails and perhaps some flow-control device such

as leading-edge slats.
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TKE EFFECT OF STABILITY AND CONTROL CHARACTERISTICS

ON THE TRACKING EFFECTIVENESS OF AIRPLANES

By George A. Rathert, Jr.

Ames Aeronautical Laboratory

INTRODUCTION

Three major factors affect the "kill probability" of a fighter:

the tracking of the target by the pilot, the fire-control-system compu-

tations, and the ballistics. This paper is a discussion of the factor

of direct concern to the aerodynamicist, the effect of the airplane

stability and control characteristics on the pilots' tracking accuracy.

Flylng-qualitles specifications have always been based to a certain

extent on the pilots' opinion of the airplane as a gun platform. The

preceding papers remind us, however, that, as airplane speeds and alti-

tudes increase and weapons systems become more complicated, these spec-

ifications can become very difficult and expensive to meet. It is

increasingly Jmportant, therefore, to examine the stability and control

requirements rigorously using measured tracking performances as a guide.

Both the Langley and Ames Laboratories are conducting flight tests to

study this problem (refs. 1 to 3), either by correlating the tracking

performances of existing fighters with their flying qualities, or by

testing airplanes equipped to vary significant stability parameters in

flight.

TEST METHOD

.j

The flight-test maneuver used at the Ames Laboratory to measure

tracking ability is shown in figure i. From an initial lateral displace-

ment the tracker swings in behind the target, tracks in level flight, and

attempts to follow as the target abruptly enters a steady turn. The

maneuver provides, at a selected Mach number and altitude, 45 seconds of

tracking in level flight, 1 to lO seconds of tracking under transition

conditions where the normal acceleration is changing as rapidly as possi-

ble, and 49 seconds of tracking in a steady accelerated turn. The

tracking accuracy will be indicated by the aim wander, the standard devi-

ation from the mean, in mils. To give this number more meaning, the

aiming point would be within a circle of a radius equal to the aim wander

approximately 70 percent of the time.
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DISCUSSION

Typical World War II Fighters

The aim wander in level flight and steady accelerated turns is dis-

cussed first. Figure 2 shows the yaw and pitch aim wanders as functions

of normal acceleration for two typical World War II fighters, the North

American F-51H and the Grumman FSF-I, tested with fixed sights and visual

target presentation. The shaded areas contain 120 test runs per airplane

made by three pilots. The points were obtained throughout the range of

normal operating conditions: normal accelerations up to the buffet bound-

aries, Mach numbers from 0.4 to 0.7, and altitudes of i0,000 and 20,000 feet.

There were no significant changes with flight conditions or pilots. The

average values by airplane were 1.6 and 1.3 mils for the F-51H and 1.9 and

1.6 mils for the F8F-I. These values are similar to the results of gun-

nery tests of the Grunmm_ FgF-2 and McDonnell F2H-2 airplanes made at the

U. S. Naval Air Test Center at Patuxent River, Md. (refs. 4 and 5). It is

interesting to note that they are also comparable to the accuracies ascribed

to current models of each of the other two major components of the weapons

system, 2 to 3 mils for a 50-calibre machine gun and 3 mils for a disturbed-

reticle sight computer. Aim wanders less than 4 mils appear to represent

reasonably good tracking.

Typical High-Performance Fighters

With the World War II fighter data as a basis for comparison, the

effects of extending the ranges of performance and stability and control

characteristics covered to values typical of current operational day

fighters were examined by testing the North American F-86A and F-86E air-

planes. Both the F-86A and the F-86E were tested to investigate the effects

of changing from a conventional power-boosted elevator control with aerody-

namic stick forces to an irreversible, all-movable tail with completely

artificial stick-force feel. The aim-wander data are presented in figure 3.

The shaded regions include 86 and 130 test runs, respectively, by two pilots

and cover the normal operating conditions: normal accelerations up to the

buffet boundary, Mach numbers from 0.7 to 0.97, and altitudes of i0,000 and

35,000 feet. Within the normal operating envelope there again were no sig-

nificant changes with flight conditions. The average values were 2.6 and

2.7 mils for the F-86A and 2.6 and 2.5 mils for the F-86E; these values are

somewhat higher than but still comparable with those for the World War II

fighters.

Looking now at the individual test points, contrary to the case with

the World War II fighters it was possible to operate the swept-wing fighters

at accelerations significantly higher than their buffet boundaries. In this

partially stalled regime they were subject to three problems which affect

Q_
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the tracking effectiveness: buffeting, lateral unsteadiness (either a

mild roll-off or an aileron over-controlllng tendency), and the longi-

tudinal pitch-up discussed in the preceding papers. Further discussion

of these problems Is presented in references 6 and 7- By correlating the
pilots' notes with particular test points it has been deduced that the

amount of buffeting and the lateral unsteadiness present before the pitch-
up made tracking more difficult but did not result in aim wanders above

4 mils. The initial pitch-up tendency produced the errors of 6 to 12 mils

shown in the figure, whereas the fully developed pltch-up introduced such

gross errors that tracking was impossible. The equally large errors for
the F-86A and F-86E show that the change in longitudinal control to the

all-movable tail with artificial stick-force feel was not an acceptable

solution to the pitch-up problem from a tracking standpoint, despite the
favorable opinion of the pilot.

Abruptly Maneuvering Conditions

The two comparisons presented, that between the World War II and the

swept-wing fighters and that between the two different control systems,
indicate that the ranges of airplane characteristics covered so far do

not significantly affect the ability to track in level flight or steady

turns. However, if it can be assumed that the sight mechanism can com-

pute the correct lead angle rapidly enough, then the tracking under transi-
tion conditions shown in figure 4 is also of interest. The small sketch

indicates the transition region where the target airplane is changing

normal acceleration as abruptly as possible.

The table shows the average aim wanders by airplane for both the

steady turns and the transition region, and the ratio between the two.
For the World War II fighters the average radial aim wanders under tran-

sition conditions were 1.4 times greater than those in steady accelerated

turns. For the high-performance fighters they were 1.8 to 2.2 times
greater.

Sources of Aim Wander

The sources of aim errors in both steady accelerated turns and in

the transition region were identified by analyzing the frequency content

of the aim-wander records. There were two predominant frequencies in the

aim wander, indicating two predominant sources of error: first, the fre-

quency of the movements of the control surfaces and, second, the short-

period oscillatory frequencies of the airframe. In steady turns (figs. _(a)
and _(b)) the aim wanders identified with the control movements were gen-

erally much more significant than those identified with the oscillatory
characteristics. In the transition region (fig. 6) the effects of the

oscillatory characteristics became equally prominent, apparently due to



• • @• @ @ @ • _ @•• •@• •@

•...::::. ..:.:. : ..-.
• _ @• • • @o_ @@

increased excitation of airp!ane'8_ci_lations by the necessary control

movements. This explains the increased aim wanders in the transition

region noted in figure 4. The transition aim wanders were largest for

the more lightly damped high-performance flghters.

The frequency analysis suggests that a closer scrutiny of the effects

of the control system and of the oscillatory characteristics of the air-

frame, including extrapolations to values typical of future designs, is

necessary.

w

Longitudinal Control Characteristics

With regard to control characteristics, the effects of changing the

longitudinal control sensitivity have been studied on an F-51H modified

to vary the stick gearing and stlck-force gradients in flight (see ref. 8).

Figure 7 shows the ranges of angular stick movement per g and stick force

per g which have been tested. Including the four existing fighters,

stick-force gradients from 32 pounds per g have been tested on the F-86A to

0.15 pound per g on the modified F-51H and stick-movement gradients from

9° per g on the F-86A to 0.i ° per g on the modified F-51H. The pilot has

been able to track with aim wanders of 3 mils or less with every system

set up, including systems that were completely unacceptable for formation,

instrument, or even cross-country flying. The pilot effort or work

required to track accurately is greater with the very sensitive systems

but the time spent in flight actually tracking is less than that for the

other types of flying for which the configurations are already rated

unacceptable by the pilot. At least for fixed sights and visual target

sighting, it must be concluded that the longitudinal-control requirements

needed to insure effective tracking are less severe than those already

imposed for formation and instrument flying (ref. 9).

Lateral Oscillatory Characteristics

The other significant sources of aim wander indicated by the fre-

quency analysis - the short-period oscillations - have also been investigated

in the lateral case with variable-stability airplanes, a Grumman F6F and a

North American F-86 at Ames and a Lockheed TV-2 at Langley. The ranges

of lateral oscillatory characteristics which have been tested are indicated

in figure 8; the period, the time to damp to half amplitude, and the Air

Force specifications defining the boundary between satisfactory and unsat-

isfactory characteristics are shown. The intensely shaded region shows

the range of period and damping covered by the four existing fighters for

which the tracking effectiveness already has been shown. Note that the

tests included configurations that did not meet the flying-qualities

requirements. The right-hand large lightly shaded region indicates the
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extension to regions of very poor damping at periods from 2 to _2 seconds

which was accomplished by using a variable-stability F6F airplane. The

left-hand cross-hatched area indicates the extension to low periods, of

the order of 1 second, achieved on the variable-stability F-86A. The

tests of the variable-stability TV-2 made at Langley (ref. 3) were

extended %o zero damping at periods of i. 9 to 2.9 seconds.

The effects of the oscillatory characteristics in smooth air are

summarized on the left-hand side of figure 9- The yaw aim wander is shown

as a function of period for two degrees of damping. The shaded region

marked 'Thigh damping" is the envelope of all the test points for a time

to damp to half amplitude of approximately 1 second. The region marked

"low damping" is the envelope of test points for times to damp to half
amplitude of 9 to 14 seconds.

All the test points are below _ mils, including the points in the

low-damping region representing configurations unsatisfactory for formation

and instrument flying. As with the longitudinal control characteristics,

the lateral oscillatory characteristics are not critical with regard to

tracking effectiveness in smooth air. In addition to the period and

damping, the effect of the roll-to-yaw ratio was investigated and a similar

conclusion was reached. It should be noted that, although the 4-rail wanders

appear reasonably good with present fire-control equipment and armament,

these values can be further reduced if necessary by providing better damping.

All the data examined up to this point were taken in normally smooth

air considered by the pilots to be typical of air-to-air gunnery at the test

altitudes of lO,O00 to 39,000 feet. For lower altitudes and air-to-ground

gunnery, the effects of operating in rough air become of considerable impor-

tance, as shown on the right-hand side of figure 9. The magnitude of the

rough air in which the runs were made is best expressed by the yaw angle of

the resulting airplane motions if the controls were held fixed. Since the

magnitude of the response depends on the stability parameters (ref. lO),

the range of responses for the F6F will be given. The standard deviation

of the yawing motions ranged from 14.1 mils at a period of 4.9 seconds and

time to damp to half amplitude of 1.4 seconds to 128.9 mils at a period of

2.3 seconds and ll.9 seconds to damp to half amplitude. A considerably

amplified discussion of these tests is presented in reference 2.

It is apparent that moderately rough air introduces unacceptably

large tracking errors for the points corresponding to the combination

of short periods and low damping. The short periods become impossible for

the pilot to control; the low damping is identified with large excitations

of the airplane in response to gusts. The tracking is satisfactory, or at

least marginally so, for points representing either long, controllable

periods or high damping. The importance of providing good yaw damping in

future fighters is strikingly illustrated by the aim wanders at a period



c s d from 14 mils to 4 mils simply by
making the variable-stability gear act in effect as a yaw damperand
increase the damping in yaw Cnr.

Computing Gunsight

The effects of the stability and control characteristics on the
pilots' ability to track with a fixed sight have been examined; it is
now of interest to determine to what extent the conclusions formed would
be affected by adding the dynamic characteristics of a typical disturbed-
reticle computing sight to the system. Figure lO shows the tracking per-
formance with the A-1 sight in the F-86A airplane which was tested pre-
viously with a fixed sight. As shownby the small diagram, it is
necessary to consider two aim wanders, the sight-line error which repre-
sents the tracking error of the pilot, and the control-line or gun-bore-
axis wander which is a measure of the disturbances the pilot has to
impose on the guns in order to track. It should be emphasized that the
gun-axls wander or motion is being considered, not the pointing error.

For the normal A-I sight at the l,O00-foot range corresponding to
the fixed-sight tests, both the sight-llne and the gun-bore-axis wanders
are of the sameaccuracy as the fixed-sight results; therefore, the previous
conclusions regarding the effects of the airplane stability and control
characteristics should apply.

Since this type of sight is also being used with similar airframes
but more advancedweapons, results were also obtained at a range of
3,000 feet. The sight-line wander is still comparable with the fixed-
sight results but the gun-bore-axis wander is significantly higher. A
frequency analysis of this wander indicates that it occurs primarily at
very low frequencies, 0.1 cycle per second or less. It is believed to
be caused by the fact that the pilot handles the airplane muchmore
slowly and smoothly when correcting errors in order to avoid exciting
unwanted disturbances of the computing reticle.

An additional investigation of tracking with a computing sight in
an F9F-3 under various maneuvering conditions is presented in reference ll.

CONCLUSIONS

The results of these investigations may be summarizedas follows:

i. The aim wanders for fighter airplanes typical of those from World
War II up to current types were 4 mils or less throughout their normal
ranges of operating conditions except under very abruptly maneuvering
conditions.
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2. Tracking errors were e s _or current swept-_ fi_rs

above their buffet bo_ies in the pitch-up regime. _o_-lsion of

s_Ll-movable tail with artificial stick-force feel was not a remedy from

the tra_ standpoint.

3- The frequencies present in the aim wanders corresponded primarily

to the frequencies at which the control surfaces were operated and second-

arily to the short-perlod oscillatory frequencies of the airframe.

4. Detailed investigations or these two sources, including extra-

polatlons to values typical of future fighters, showed that:

(a) The longitudinal control-system characteristics were less

critical for tracking than for instrument and formation flying whlch

are covered by the flylng-qualities specifications already imposed.

(b) The lateral oscillatory characteristics were critical only

in rough air at low perlods in combinatlonwlth poor damping. By

providing good yaw damping, it was possible to track reasonably well

with periods as low as 1 second. Otherwise the lateral-oscillatory-

characteristics requirements for good tracking also would be less

severe than those imposed for good formation and instrument-flying

handling qualities.

5- The addition of a normal disturbed-reticle computing sight did

not affect the tracking accuracy at normal ranges and the preceding con-

clusions should apply.
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DATA ON SPOILER-TYPE AILERONS

By John G. Lowry

Langley Aeronautical Laboratory

Interest in spoiler-type ailerons has been intensified recently

mainly because they give high reversal speeds for the thin, flexible

wings now being used. For the purpose of this paper the term "spoiler"

will be applied to many different aileron configurations that obtain

their effectiveness by reducing the lift on one wing. For the sake of

completeness, a bibliography on spoiler-type controls is included; these

papers are arranged according to date of publication.

Examination of spoiler data given in the bibliography indicates

that spoilers can be designed to provide adequate effectiveness at sub-

sonic, transonic, and supersonic speeds but at subsonic and transonic

speeds plain spoilers do not, in general, provide linear variation of

effectiveness with projection, particularly at the lower velocities.

In addition, recent data on thin wings (6 percent thick or less) show

that a region of ineffectiveness exists at high angles of attack. Using

a slot through the wing behind the deflected spoiler (see refs. 1 to 5)

alleviates the ineffectiveness associated with both low projections and

high angles of attack.

Figure i illustrates the effect of the slot. On the left, the

rolling-moment coefficient C Z is plotted against spoiler projection 5s

for a plain and a slotted spoiler on an unswept wing (unpublished data).

For projections of less than 1 percent the plain spoiler is seen to be

ineffective. If a slot is added behind the spoiler and, in this case, a

deflector is added to the lower surface, the effectiveness is almost linea

with projection and considerably greater than for the plain spoiler.

Be nonlinearity of control effectiveness of the plain spoiler can be

masked to some extent by providing aileron-stick deflections that will

rapidly deflect the spoiler near neutral. Although this nonlinear stick-

aileron motion may provide satisfactory control for this condition, the

control effectiveness will not be satisfactory at high angles of attack

as shown by the right-hand portion of figure 1. Here C_ is plotted

against angle of attack _ for a spoiler on a 50 ° swept wing of aspect

ratio 4 (unpublished data). The plain spoiler is ineffective above an

angle of attack of about 13 ° . The addition of the slot and deflector

increases the effectiveness at all angles of attack and provides control

up to 24 ° • This ineffectiveness at high angles of attack results from

flow separation at the wing leading edge and is almost independent of

spoiler projection. It is, however, alleviated to some extent by decreases

in the wing taper ratio and wing sweep, and by increases in the Reynolds
number.
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would be expected to improve the effectiveness of a spoiler aileron.

Figure 2 shows the effect of one such device - a drooped leading edge

and chord-extension - on the effectiveness of both a plain and slotted

spoiler on a 6-percent-thick, 45° sweptback wing of aspect ratio 4 and

taper ratio 0.3 (unpublished data). For both the plain spoiler and the

spoiler-slot-deflector, where the deflector projection 8d is three-

fourths of the spoiler projection 8s, the addition of the leadlng-edge

modification improved the spoiler effectiveness, particularly at moderate

angles of attack. These data indicate that modifications necessary from

a longitudinal-stability point of view should be beneficial if they delay

or eliminate the leading-edge separation.

Since the slots are desirable for almost all configurations and

necessary in many cases at subsonic speeds, their effectiveness at super-

sonic speeds is of interest. Figure 3 shows the variation of rolling-

moment coefficient with angle of attack for both a plain spoiler and a

spoiler-slot-deflector on a swept and an unswept wing at a low supersonic

speed, M = 1.20 (unpublished data). The addition of the slot and deflec-

tor increased the effectiveness of the plain spoiler at all angles of

attack for both wings. Some preliminary results at a Mach number of 1.6

indicate the same trends as do these data at M = 1.20. Thus, the slots

that are so desirable at subsonic speeds are also beneficial at super-

sonic speeds.

In order to realize the advantages of low twisting moment and

resulting high reversal speed, the wing structure with the spoiler must

be as stiff as with other types of ailerons. Fortunately, spoilers should

be located well to the rear of the wing and, for most spoiler and spoiler-

slot configurations 3 slots through the wing or breaks in the skin can be

located behind the torque box and should not seriously reduce the torsional

stiffness of the wing.

The next part of the discussion is concerned with the location of

spoilers on wings of different plan forms. Figure 4 shows the most sat-

isfactorylocation for spoiler ailerons on swept wings. The results of

many investigations at subsonic, transonic, and supersonic speeds (refs. 5

to 21 and unpublished data) have indicated that for best effectiveness

the spoilers should be located in the shaded area. The forward or chord-

wise limit has been established from two considerations: (1) ineffec-

tiveness at low projections (since this ineffectiveness increases with

distance from trailing edge) and (2) unacceptable lag at low speeds.

For configurations that do not operate at low speeds (for example, super-

sonic missiles) 3 the lag may not be a determining factor as it decreases

with increases in speed. The chord positions referred to are shown

schematically on the right of figure 4. The spoiler location is considered
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as the point of highest deflection. The spanwise limits Yi and Yo

are a function of the wing sweep.

Figure 9 shows the effect of sweep on these spanwise limitations.

On the left is a typical example of the variation of effectiveness with

aileron span for ailernns starting at the wing tips. For the unswept

wing (unpublished data), the inboard 29 percent of the span does not give

any appreciable rolling moment and, for the 90 ° swept wing (ref. 18),

the outboard 19 percent is ineffective. From several similar investiga-

tions at both subsonic and supersonic speeds, the approximate variation

with sweep for the inboard end Yi and the outboard end Yo has been

established as shown on the right in figure 9- This plot shows that, as

the sweep of the wing is increased, the spoiler should be moved inboard
for best effectiveness.

Figures 6 and 7 show the most satisfactory locations for spoilers

on 60 ° delta wings. The only limitation, based on the available data

(refs. 22 and 23 and unpublished data), is the forward location of the

spoilers. This limitation is based on ineffectiveness at small angles

of attack at subsonic speeds. Figure 7 gives a typical example of the

effect of chordwise location. The effectiveness C Z is plotted against

projection at M = 0.89 for spoilers located at 60 percent root chord

in the unsatisfactory region and at 93 percent root chord in the satis-

factory region on a delta wing at zero angle of attack. It can be seen

that the forward location is ineffective in producing rolling moment up

to about l0 percent projection. The rearward location gives effective-

ness throughout the deflection range. As the angle of attack is increased

the forward spoiler tends to become more effective and has substantially

the effectiveness of the rearward spoiler at 12 ° angle of attack.

A further restriction is necessary if the delta wing is equipped

with a double slotted flap (ref. 25). In this case, the spoiler should

be located on the flap (fig. 6). The right-hand portion of figure 7

shows the rolling-moment coefficient plotted against spoiler projection

for a spoiler located ahead of the flap - the position found to be most

satisfactory for relatively thick straight and swept wings - and- for a

spoiler located on the flap. It is obvious that when the spoiler is

located ahead of the flap there is an undesirable variation of effectiveness

with prcjection while the spoiler located on the flap provides sufficient

control and has an almost linear variation with projection.

Now that the desirable location for spoilers on wings has been

established to some extent, the next problem is to determine how big

the spoilers have to be. At subsonic and transonic speeds experimental

results must be relied on almost entirely. The results of configurations

close to the desired one can then be adjusted to the desired configura-

tion by using standard aileron design methods (refs. 24 to 26). The



effect of c in spoiler uration must be obtained from
existing experimental data. In general, flap-type spoilers will have
about i0 percent less effectiveness than spoilers projected normal to
the wing surface. An analysis of existing data has indicated that to
provide adequate control spoilers should have a span of from 50 to 70 per-
cent of the wing semispan and a projection of 7 to i0 percent of the mean
chord. At supersonic speeds somehelpful information is available con-
cerning spoilers projected normal to the surface. Using a shock-expansion-
separation theory the pressures ahead of the spoilers can be estimated
and with the aid of empirical relationships the pressures behind the
spoiler can be obtained (refs. 20 and 27). Thus for plain spoilers at
supersonic speeds the effectiveness maybe estimated with somedegree
of accuracy.

In the design of any control system it is necessary to know the
operating forces of the control. The hinge-moment results for spoilers
are not nearly so extensive at high speeds as are effectiveness data.
The few data available do_ however, show the general trends that are to
be expected. Figure 8 shows the hinge-moment characteristics of flap-
type spoilers on a 60° delta wing. The results (unpublished data) are
presented as the variation of hinge-moment coefficient Ch with rolling-
momentcoefficient C_, so that a comparison with a flap-type aileron
of about the samesize can be made. It can be seen that the hinge moments
for this type of spoiler are of about the samemagnitude as those of the
flap at both subsonic and transonic speeds. At the subsonic speed,
M = 0.62_ a nonlinearity is present at low projections for the spoiler-
type control - a phenomenontypical of this type of control (ref. 5).

Whena spoiler-slot-deflector arrangement is used, the hinge moments
of the deflector would be expected to reduce the hinge momentsof the
spoiler since the deflector should be unstable and tend to open because

of its rear hinge location. Figure 9 shows the results of a recent

investigation (unpublished) of a spoiler-slot-deflector on a 6-percent-

thick 35° swept wing at M = 0.85. The hinge-moment coefficient Ch

is plotted against spoiler projection 5s for a plain flap-type spoiler

and for a spoiler-slot-deflector when the deflector projection 5d is

one-half the spoiler projection. The deflector appreciably reduces the

hinge moments of the spoiler particularly in the spoiler-deflection range

from i to 4 percent chord. The curves are not faired from 0 to i percent

projection since no data are available and reversals similar to those

shown in figure 8 might be expected. Variation of the ratio 5s/5 d

will allow one means of adjusting the hinge moments of this type of

control and appears to offer promise of a control of good effectiveness

and reasonably low hinge moments.

d
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As would be expected, the h_e moments of thin-p_te or circ_-

arc spoilers are small compared to those of f_p-t_e spoilers since the

hinge moments can be developed only on the top and bottom edges of the

spoiler. Results at low speeds on relatively thick wings (refs. 5 and 28)

and on a swept wing at transonic speeds (ref. 29) confirm the low hinge

moments but show that they are very nonlinear. This nonlinearity can

probably be tolerated since they give forces about one-thirtieth as large

as do flap-type ailerons on a typical fighter at transonic speeds.

These low hinge moments are all very well, provided that the necessary

lO percent projection can be incorporated in a _-percent-thick wing.

Figure lO shows two ways of doing this along with a typical flap-type

spoiler. The top sketch is the flap-type spoiler where the projection

is limited only by the chord of the flap and the deflection. The center

sketch shows a form of clrcular-arc spoiler (ref. 30). In this case

three circular-arc spoilers, one behind the other, are linked so that

the rear spoiler deflects 3 times as fast as the front spoiler and at

full deflection provides a solid spoiler of the desired height. The

bottom sketch is the so-called semaphore spoiler and consists of several

flat plates hinged in the chord plane and deflected similar to semaphore

train signals. At full deflection, they can form an almost solid spoiler

of considerable deflection as shown in the figure. The number and length

of the individual arms will depend on the deflection desired and the wing

thickness. These last two types can be made to have relatively low hinge

moments while still providing the desired projection.

Another means of providing spoiler control with low operating forces

is that of using a Jet of air to replace the spoiler (refs. 51 to 53).

Figure ll shows some preliminary results of a jet control utilizing stag-

nation pressure on a 5_ ° swept _-ing. For these tests a very short span

spoiler was used but the variation of effectiveness with span should be

the same as for a conventional spoiler. With stagnation-pressure air,

the jet is as effective as a 3-percent-chord spoiler and does not show

the loss in effectiveness at large angles of attack. This, of course,

is not sufficient for a fighter-type airplane but could be used as

emergency control if normal control were obtained by using air at high

pressure where roll is obtained both from jet thrust and from changing

circulation around the wing. In order to vary the rolling effectiveness

C_ the slot width can be varied. The rlght-hand portion of figure ll

shows the variation of C Z with gap width 5g_ an almost linear varia-

tion is indicated for the Jet alone. One means of increasing the effective-

ness is to deflect a spoiler ahead of the jet. The curve for this con-

figuration shows that considerably more effectiveness is obtained. In

this case, the total spoiler projection, 5 percent chord, could be fitted

as a simple circular-arc spoiler _lthin the wing.
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In a i effectivenes_ and hinge moments of a control

system 3 its effect on the rest of the airplane is of importance. Any

obstruction such as a spoiler that causes separation of flow behind it

will create turbulent flow over parts of the airplane. This turbulent

flow may result in buffeting or shaking of the airplane. The few data

that are available (unpublished) on flow fluctuations behind a spoiler

are too sketchy to provide any reliable indication of either the magni-

tude or frequency of the air flow. A survey of the airplanes using

spoilers at high subsonic speeds indicates, however, that about one-half

of them have had no trouble from buffeting. Although not much can be

done as far as predicting buffeting, it is known that perforating the

face of the spoiler or otherwise breaking up the solid blocking will

reduce any tendency of buffeting but that this will also cause some

reduction in effectiveness, the magnitude of the reduction depending

on the amount of area removed.

Another point of concern in the use of spoiler-type ailerons is

the drag penalty associated with their use. Figure 12 shows the drag

coefficient due to control deflection _CD for both flap-type ailerons

and spoiler ailerons that produce the same rolling-moment coefficient.

The left-hand portion is for a swept wing at subsonic speeds (unpublished

data) and the right-hand portion is for an unswept wing at supersonic

velocities (refs. 15 and 34). It can be seen that there is a large drag

associated with spoilers at low angles of attack but that the drag incre-

ment decreases rapidly with increased angle of attack and at angles of

attack of about 8° the spoiler and aileron produce the same drag. In

order to give some idea of the seriousness of these relatively high drags

associated with spoilers at low angles of attack, calculations were made

for a modern fighter making a 90 ° bank in 1 second at 30,000 feet and at

a Mach number of 0.85. These calculations show that the speed of the

airplane will be decreased only 2 miles per hour. If the maneuver is

assumed to be an entry into a turn, even less loss in speed would be

obtained since the angle of attack increases during the maneuver.

In conclusion, in general, there should be a slot through the

wing behind the deflected spoiler. The spoiler should be located to

the rear of the wing in the center portion of the wing semispan. Satis-

factory spoiler configurations can be designed that will have reasonably

low operating forces.

b
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RECENT INFORMATION ON FLAP AND TIP CONTROLS

By Douglas R. Lord and K. R. Czarnecki

Langley Aeronautical Laboratory

INTRODUCTION

In the past few years, research programs on controls have been

expanded to include systematic transonic and supersonic investigations

of new types of control devices and to adapt the controls developed

through subsonic research to the supersonic regime. The results now

available are sufficiently extensive to w_rrant an evaluation of the

progressto date and to establish certain trends. The data presented

in the present paper are used to outline these trends rather than to

give a completely comprehensive stmm_ry of the available data. A

bibliography of references, however, is included.

DISCUSSION

The fundamental requirement of a control, at any speed, is that

it produce the necessary lift, pitching moment, or rolling moment to

control the aircraft in flight. Considerable testing of controls at

high speeds has shown that the desired effectiveness can usually be

obtained without difficulty. Since the supersonic theory for predicting

control effectiveness is cumbersome and the assumptions are often not

well-supported by experiment, simpler methods of estimating the control

effectiveness are desired. It is to be expected that, to a first order,

the lift of a control is directly related to the area of the control,

and the moment of the control forces about a given axis is directly

related to the moment of the control area about that axis. This simple

concept is substantiated by data presented in figures 1 and 2 which

show the results of tests in the Langley 4- by 4-fOot supersonic pres-

sure tunnel at Mach number 1.61 of a delta wing and of a trapezoidal

wing. In these figures, the slopes of the curves of lift, rolling-

moment, and pitching-moment coefficients with control deflection are

plotted as functions of the control area, control-area moment about

the roll center, and control-area moment about the pitch center, respec-

tively, for the control configurations tested. It is evident that to a

first order it is possible to estimate from these correlations the effec-

tiveness of any control on the wings shown, regardless of control plan

form. Similar results have been obtained for wings of other plan forms

(refs. 1 to 3). Some flight results (ref. 4) indicate that correlations

may not be obtainable for some controls on high-aspect-ratio, highly
swept wings.
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In view of the fact that satisfactory control effectiveness can be

obtained and usually can be estimated, a primary objective of research

on controls at the present time is to develop methods for balancing the

forces acting on the controls to improve the hinge-moment characteristics.

In order to reduce the magnitude of the control hinge moments_ several

methods have been used, such as overhang nose balances, horn balances,

tip controls_ al_-movable wings_ tabs, and paddle balances. Until

recently, very few data have been available on overhang balances at

high speeds_ however, recent transonic and supersonic tests of trailing-

edge controls having various amounts of overhang nose balance have been

made on the transonic bump in the Langley high-speed 7- by lO-foot tun-

nel and in the Langley 9- by 12-inch supersonic blowdown tunnel. Fig-

ure 3 shows the variation with Mach number of the hinge-moment-parameter

slopes with control deflection and with angle of attack for the two

extreme test configurations, one having no overhang balance and the

other having lO0-percent balance. Data for the configurations having

a balance area between 0 and I00 percent fall between the curves shown.

Throughout this paper, percent balance is defined as the ratio of con-

trol area ahead of the hinge line to control area behind the hinge line,

expressed as a percentage. For this type of control, the hinge-moment-

coefficient slopes, which are based on the moment of the control area

behind the hinge line, have been converted to hinge-moment-parameter

slopes, which are based on the moment of the total control area about

the control leading edge, in order to make the data for the two con-

trols directly comparable. It should be noted that all the tests were

made with a rounded leading edge on the control and that the 9- by 12-

inch-tunnel data were obtained on a wing mounted on a half-body, which

may explain some of the discrepancies in the data from the two tests.

In general, the data indicate that the nose balance is effective in

changing the hinge moment due to control deflection throughout the

speed range tested. The nose balance causes a much larger change in

hinge moment due to wing angle of attack at supersonic speeds than at

subsonic speeds. Since these slopes were obtained at a control deflec-

tion of 0° and an angle of attack of 0°, it appears that, in order to

gain more insight into the effectiveness of the nose balance at subsonic

and supersonic speeds, it will be necessary to consider the effect of

control deflection and angle of attack.

Figure 4 shows for a Mach number of 0.60 and a Mach number of 1.96

the vsa_iation of the hinge-moment parameter with control deflection at

an angle of attack of 0° and with angle of attack at a control deflec-

tion of 0° for the two control configurations discussed in the previous

figure. In both the subsonic and supersonic cases, the unbalanced con-

trol, as designated by the solid curves_ has fairly linear character-

istics and for the Mach numbers shown there is only a small change in

slope due to Mach number of the hinge-moment curve with control deflec-

tion near _ = 0°. For the 100-percent-balanced control, the subsonic

curve shows a large balancing effect with increasing control deflection
_4
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at the small deflections. At supersonic speed, the lO0-percent-balanced

control shows less balancing action than it did at subsonic speed. Other

data at angles of attack have shown that at supersonic speeds the balance

is ineffective at positive control deflections when the nose of the con-

trol lies in the dead-air region behind the wing but has a strong balanc-

ing effect at negative control deflections when the control nose is

exposed. At all the test angles of attack, the effect of the nose bal-

ance is less at subsonic than at supersonic speed when the control deflec-
tion is 0°o

Since at supersonic speeds the dead-air region from the wing seems

to be important, it would appear that changes in wing section to mini-

mize this region would improve the balancing effectiveness of this type

of control. The results of two-dimensional tests in the Langley 9-inch

supersonic tunnel at a Mach number Of 2.40, in which changes in section

were made, are shown in figure 5- The hinge-moment-parameter slopes,

which were taken from fairly linear curves, are plotted as functions of

the ratio of control balancing area to total control area. Models were

tested for two of the sections with different balance-area ratios as

show_ by the curves. Models of all four sections for a balance-area

ratio of 0.375 were tested. For these tests an area ratio of approxi-

mately 0.6 would be required to balance the hinge moment due to con-

trol deflection for the basic configuration (denoted by the solid curve);

whereas a ratio of 0.4 is all that is required to balance the hinge

moment due to angle of attack. The changes in section had only a minor

effect on the hinge moment due to control deflection, contrary to what

might have been expected, and had considerable effect on the hinge moment

due to angle of attack.

In figure 6, pressure distributions are presented for a typical

section modification, in this case wing bevel, to illustrate this phenom-

enon in more detail. The solid curves indicate the pressure variation

along the chord on the upper surface and the dashed curves show the pres-

sure variation on the lower surface. The left-hand side of the figure

shows the effect of a change in section on the pressure distributions

due to a large control deflection at an angle of attack of 2 ° . In this

case, beveling the wing ahead of the control increased the load on the

balancing portion of the control, but it also increased the load on the

control behind the hinge line so that the net effect on the hinge moment

was negligible.

The right-hand side of the figure shows the effect of a change in

section on the pressure distribution due to an angle of attack of 8°

with a control deflection of 0 °. In this case, there is little change

on the upper surface; however, the lower-surface peak-pressure point

moves forward and increases in intensity. Behind the hinge line there

is some forward shift in the center of pressure of the load. The resultant

hinge moment is therefore much more positive because of the modification
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of the wing section. Another way of increasing the balancing action of

the overhang-nose-balance control is to increase the gap between the wing

and the control so that the control behaves more like an isolated wing.

However, such a modification results in a drag penalty, as do the modi-

fications to the wing section.

o

d

A second method for reducing the hinge moments obtained on trailing-

edge controls at supersonic speeds is to add a horn balance, ahead of

the hinge line, to the outboard portion of the control. Figure 7 shows

a correlation of hinge-moment-slope parameters at M = 1.60 obtained from

recent tests of horn-balanced controls in the Ames 6- by 6-foot super-

sonic tunnel (ref. 5), tests in the C.I.T. Jet Propulsion Laboratory

12-inch supersonic tunnel (refs. 6, 9, and 16), and on a Langley Pilot-

less Aircraft Research Division rocket research model (refs. 17 and 18).

The correlation with the ratio of control-balance area to total control

area is approximately linear, even though both triangular horns and rec-

tangular horns are included on delta wings having leading-edge sweeps

from 60 ° to 75°. As compared to the overhang nose balance, the balancing

horns are considerably more effective in reducing the hinge moments due

to control deflection and angle of attack. A horn of only one-third the

control area balances Ch8 and a horn of only 15 percent of the control

area balances Ch_ for this Mach number condition. With this type of

control, it is of course impossible to balance both Ch8 and Ch_

closely with one balance configuration.

Still another method of reducing the control hinge moments at super-

sonic speeds is to use tip controls, in which the hinge-line location may
be chosen to balance the forces acting on the control. Figure 8 presents

recent data on 60 ° half-delta tip controls on a 60 ° delta wing from

Langley Pilotless Aircraft Research Division rocket tests (ref. 28) and

tests in the Langley 9- by 12-inch supersonic blowdown tunnel (refs. 29

and 30), the Langley 4- by 4-foot supersonic pressure tunnel (ref. 13),

the Langley 9- by 9-inch Mach number 4 blowdown jet, and the Langley

ll-inch hypersonic tunnel. These data extend the speed range for which

tip-control data were previously available to the hypersonic region and

increase the range of balances tested. For comparative purposes, exper-

imental curves are also shown for the hinge-moment-slope parameters of

a 30-percent-chord trailing-edge control obtained from two-dimensional

tests in some of the same test facilities (refs. 20 to 22). In general,

the hinge-moment-slope parameters for the tip controls vary with shifts

in the hinge-line location in a systematic manner, as would be expected.

The linear-theory curve is shown for the 55-percent-balance condition,

which corresponds to the square test points of the experimental data.

In view of the interest shown in data at the highest available Mach

number, figure 9 shows in more detail the hinge-moment characteristics
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with control deflection and angle of attack for the two types of controls

tested at a Mach number of 6.90. The hinge-moment-coefficient scales are

different for the two controls and the characteristics are not directly

comparable because of the differences in moment areas on which the coef-

ficients are based. The linear-theory curves are shown for the range of

test angles, although the linear theory is obviously invalid at this Mach

number except for very small angles and extremely thin wings.

The shock-expansion theory gives a reasonable prediction of the

hinge-mement-coefficient variation with control deflection for the

trailing-edge control and gives excellent prediction of the variation

of hinge-moment coefficient with angle of attack. For the tip control,

the shock-expansion theory, ce_puted by assuming that the flow over the

control was completely two-dimensional, provided an excellent prediction

of the hinge-moment characteristics at the small angles. The linear-

theory agreement with the shock-expansion theory at the small angles is

fortuitous as a result of the section of the particular control tested.

The agreement between shock-expansion theory and experiment for the

control hinge-moment coefficient due to control deflection, shown in

this figure, tends to give an overly optimistic impression of our ability

to predict the flow characteristics at this Mach number. Figure lO shows

the experimental and shock-expanslon pressure distributions for the

trailing-edge control, first with a control deflection of 16 ° and an

angle of attack of 0° and second with an angle of attack of 16 ° and a

control deflection of 0°. The prediction of the angle-of-attack effect

is very good; however, the prediction of the control-deflectlon effect

is poor. On the wing lower surface, the flow separates ahead of the

hinge line and then gradually increases in pressure to the trailing edge.

The effects on the hinge moment of the discrepancies between experimental

and theoretical pressure distributions are of a compensating nature and

therefore the experimental loss in hinge moment is considerably less than

the experimental loss in lift. A similar investigation of the flow

details for the tlp-control case is needed to understand better the valid-

ity of the theoretical predictions at this Mach number.

_v

To study more closely the effect of changes in tip-control hinge-

line location a_d plan form at lower Mach numbers, extensive tests have

been made in the Langley 4- by 4-foot supersonic pressure tunnel (ref. 13)

and in the Langley 9- by 12-inch supersonic blowdown tunnel (refs. 29

and 30 and unpublished data). The correlation of the hinge-moment-slope

parameters with area ratio at a Mach number of 1.6 for the lO configura-

tions tested is presented in figure ll. From this figure it is evident

that the slope parameters correlate satisfactorily with area ratio,

despite the secondary effects of plan form, which cause some scatter of

the points. The tip controls may be balanced at this condition for an

area ratio near 0.4, and the ratio for balancing Ch8 is very close to

the ratio necessary to balance Ch_.
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The balancing of control hinge moments at a control deflection of 0 °

and an angle of attack of 0° is likely, however, to prove misleading in

view of the effect of angle of attack and control deflection. The most

closely balanced controls tend to have the most nonlinear hinge-moment

characteristics. Figure 12 shows the hinge-moment-coefficient curves

with control deflection at several angles of attack for a 55-percent-

balanced control at a Mach number of 1.61. As the angle of attack is

increased to 12°, the curves become increasingly nonlinear and in some

regions the control is overbalanced. On the right-hand side of the fig-

ure, the hlnge-moment curves for a control having less balance show an

increased slope but no regions of overbalance with control deflection.

In an attempt to reduce the nonlinearities, a fence was installed at

the wing-control parting line to prevent crossflow through the angular

gap due to deflection of the control (ref. 34). When this fence was

installed, the average effect was an improvement in the linearity of the

curves. A similar linearizing effect of the fence was also found in tip-

and horn-balanced-control tests in the Langley 9- by 12-inch supersonic

blowdown tunnel (refs. 30 and 14).

Other balancing devices which have been tested, but which are not

discussed in detail here, are the paddle balances, tabs, and all-movable

controls. The paddle balances (ref. 5) are very effective at supersonic

speeds in reducing Ch8 and can be used alone to reduce Ch_; however,

there is a very large drag penalty associated with their use. Tabs

(refs. 33 and 34) are less effective at supersonic speeds than at sub-

sonic speeds in balancing the hinge moments arid require large deflections.

All-movable delta controls appear encouraging at supersonic speeds because

there is very little shift of the center of pressure with body angle of

attack or wing deflection; however, there is a large shift in center of

pressure through the transonic speed range and the method of mounting

poses considerable problems.

CONCLUSIONS

Correlations have been obtained, on the basis of simple geometric

parameters, which permit quick estimates of the effectiveness and hinge-

moment characteristics of controls of any plan form or location on wings

of many plan forms at supersonic speeds. Closely balanced controls tend

to exhibit nonlinear hinge-moment characteristics with control deflection

and angle of attack. On tip and horn-balanced controls, a fence installed

at the wing-control parting line produces a linearizing effect.
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SEVERAL FACTORS AFFECTING ROLL CONTROL SYST_V_S

OF INTERCEPTORS

By Leonard Sternfield

langley Aeronautical Laboratory

"V

One of the primary defense weapons of our country's air-defense sys-

tem will be the manned all-weather interceptor, which is to be capable of

flying at supersonic speeds and of operation to an altitude of 60,000 feet.

During the attack phase of the interceptor's mission, which is started as

Soon as the interceptor establishes contact with the target, the radar

continuously furnishes target data such as range and azimuth and eleva-

tion angles to the fire-control computer. These measured data are pro-
cessed by the fire-control computer to obtain conmmnd signals to deflect

the airplane's control surfaces. In order for the interceptor to maneu-

ver toward the target, it must roll to turn. It is, therefore, necessary

to incorporate an effective roll control system in the automatic guidance

or tracking system of such airplanes. The purpose of this paper is to
present the results of a theoretical investigation concerned with two dif-

ferent types of roll control systems.

Several recent design studies (ref. I, for instance) for both longi-

tudinal and lateral automatic-control systems have considered different

types of compensating networks. The purpose of a compensating network is

to cancel the effect of either one or more of the airplane's modes of

motion from the _esponse of the airplane to a command input. For example,
the long-period longitudinal oscillation, the phugoid, may be canceled

by a compensating network designed for an altitude control system, or the

Dutch roll oscillation may be canceled by a compensating network design4d

for a lateral control system. A general study of compensatlng networks

was undertaken and the first network studied was one designed to cancel

the effect of the airplane dynamics, that is, all the lateral modes of

motion, from the response of the airplane in roll. Thus, the first type

of roll control system to he discussed is referred to as a compensating

network system. In order to accc_plish this cancellation, the compen-
sating network is so designed that its transfer function is the inverse
of the airplane's transfer function.

Figure 1 shows a block diagram of one type of compensating network

incorporated in a roll control system. This system corresponds to a veloc-

ity command system that could control any one of a number of positional

quantities such as the radar tracking error, airplane attitude, or, as in
this case, controlling bank angle. An error in bank angle is i_nediately

changed to a conmmmd in rolling velocity which passes through an integra-

tor into the compensatimg network where H(p) is the airplane's transfer
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function of rolling velocity due to an aileron deflection. The equation

for H(p) is given in figure i. The output of the compensating network

is fed into a hydraulic servomotor represented by a first-order time

l_g 1/(l+_p) and results in an aileron deflection which causes the air-

plane to roll. It is seen that the compensating network is so designed

that its transfer function includes the inverse of the airplanes's trans-

fer ikinction H(p). As would be expected, the closed-loop transfer func-

Zion _o/_ i of this system, presented in figure i, is solely a function

of the gains KE and K I and the time constant T and does not include

the airplane dynamics. The type of motion obtained for the aileron can

be determined from the transfer function of 5a/_i which is a product of

two factors, the first being the closed-loop transfer function and the

second, the inverse transfer function of the airplane where the denomin-

ator very closely represents the characteristics of one degree of freedom

of the airplane in yaw. The aileron motion would, therefore, be a damped

oscillatory motion, oscillating at a frequency which is approximately the

airplane's natural frequency, and the damping of the oscillation is a

direct function of the damping-in-yaw derivative Cnr. Also, the motion

in sideslip has the same period-damping relation as the aileron motion.

However, the Dutch roll oscillation in the sideslip and aileron motions

could be greatly reduced by using an automatic control system regulating

sideslip and yawing velocity. Figure 2 shows the response in bsm_k due to

a step input co_mmnd of 60 °. The motion, corresponding to the closed-

loop transfer function presented in figure 1 has good response character-

istics and excellent stability.

With the compensating network Just described, it appears obvious

that the airplane dynamics could be eliminated from the motion in bank

for a command input. There are, however, several problems of interest

which were investigated. The transfer-function analysis of the system

resulting in the expression shown in figure 1 assumes that the system is

linear. The question arises as to how well the system behaves if non-

linearities of the type represented by limiting the maximum control deflec-

tion and maximum rate of control deflection are taken into account. Another

problem directly related to compensating networks is the possibility of

incomplete compensation occurring; that is, the transfer function of the

compensating network will not cancel the airplane's transfer function.

Incomplete compensation may be caused by designing a compensating network

based on inaccurate estimates of the stability derivatives so that the

airplane's transfer function in the compensating network is not the exact

inverse of the true airplane's transfer function, or incomplete compensa-

tion may be due to the fact that the airplane assumes a flight condition

different from the one for which the compensating network was designed.

Also, one is concerned not only with knowing how well the compensating
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network behaves as a ccmnand system but of equal i_portauce one must

determine the ability of the compensating network to stabilize the air-

plane motion if the airplane is disturbed by a gust.

Figure 3 illustrates the effect of limits in the velocity ccmm_md

system. Time histories of the motions in bank in response to a step

input command are presented. These motions as well as all subsequent

motions presented were obtained on a Reeves Electronic Analog Computer

at Project Cyclone. The flight conditions correspond to an interceptor

flying at 60,000 feet at M = 2. The upper plot shows the effect of lim-

iting the maximum rate of control deflection _ when the maximum control

deflection 5 is limited to 20° . The value of 5 for the solid-line

curve is lO0°/sec, whereas the dashed-line curve corresponds to a value

of 8 of 40°/sec, the present requirement for powered controls. Although

the rise time is not affected by reducing _, the system becomes unstable.

The lower plot in figure 3 shows the effect of limiting 8 for a value
of _ of 100°/sec. The solid-line curve is for the condition of

8 = lO0°/sec and 8 = 20 ° and the dashed-line curve represents the case

of the limited value of 8 being reduced to l0 °. Here again, the stabil-

ity is decreased as 8 is decreased. Thus, in general, a reduction in

either the limiting value of 8 or _ decreases the stability of the

system. If the error gain is decreased, the system becomes less critical

to limiting but the response is much slower.

The other problem mentioned was the effect of small inaccuracies in

the estimation of the stability derivatives in designing the compensating

network, thereby resulting in incomplete cancellation of the airplane's

transfer function. This problem was investigated by varying each deriva-

tive and several derivatives in combination. The results indicated that

small variations of most of the derivatives had little effect on the

motion. However, the estimation of the directional-stability deriva-

tive Cn_ was critical. Figure 4 shows the effect of inaccurately esti-

mating Cn_ on the motion in bank for the velocity command system. The

solid-line curve is for the case of complete cancellation where Cn_ = 0.28.

As Cn_ is increased to 0.32, indicated by the dashed-line curve, a

slightly divergent oscillation is introduced. However, if the actual value

of Cn_ were less than 0.28, a motion similar to the solid-line curve

is obtained. The response for Cn_ = 0.24 is shown in figure 4. It

should be noted that, if rudder control is used to maintain zero sideslip

during the maneuver, the roll control system may not be sensitive to the

inaccurate estimate of Cn.
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Calculations made for the interceptor flying at M = 1.4 at

60,000 feet, where the stability derivatives corresponding to this new

flight condition are different from those corresponding to the designed

flight condition of the compensating network, show that the motion is

unstable for the velocity command system but stable for a velocity-plus-

acceleration command system. However, for this velocity-plus-acceleratlon

command system, similar results on the effect of limiting and the inaccur-

ate estimation of Cn_ were obtained as indicated for the velocity conm_d

system. If a displacement command system were used, it is expected that

limiting would not have as pronounced an effect as shown in figure 5-

Thus far, the results presented were confined to a compensating net-

work as a command system. In order to investigate how well the velocity

command system stabilizes the airplane motion if the airplane is disturbed

by a gust, the airplane was assumed to be disturbed from trim by step inputs

of either C I = 0.009 or Cn = 0.009 . Figure 9 shows the results of these

calculations. It is apparent from this figure that the Dutch roll oscilla-

tion does appear in the motion and, thus, the compensating network does not

offer any improvement when the airplane is disturbed by a gust. The inte-

grator in the system, which gives control proportional to the integral of

the bank-angle error, reduces the steady-state error to zero. Additional

calculations indicated that the response is improved for higher gains until

limiting of 8 and _ takes place.

The second type of roll control system investigated is a conventional

attitude control system with an integrator and rate and acceleration feed-

back. A block diagram of the system is shown in figure 6. The analysis

considered three airplanes which had the characteristics shown in figure 7.

The motions presented in figure 7 are the rolling velocity due to a step

deflection of the aileron for each of the three airplanes. It is noted

that, for airplanes B and C, the Dutch roll oscillation appears in the

rolling motion, whereas for airplane A, the motion resembles the response

obtained from considering the airplane in only one degree of freedom in

roll. The corresponding sideslip motions will in all cases contain the

Dutch roll characteristics. For these airplanes it was found that a yaw

damper very effectively stabilized the sideslip motion but increased the

steady-state sideslip angle to approximately 1 °. Where the coupling

between roll and sideslip is mainly a product of inertia effect, as in

airplane B, a relatively larger amount of yaw damping is required to elim-

inate the Dutch roll from the rolling motion, thus resulting in a larger

steady-state sideslip angle.

The results presented in the following figures indicate trends co, non

to all three airplanes when equipped with a yaw damper and the roll control

system outlined in the block diagram. The response of the airplane to a

step-comnand input was very satisfactory without the integrator if the
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airplane has approximately neutral spiral stability. However, in ana-

lyzing the motion of the airplane after being disturbed by a gust, no

satisfactory response was obtained as the gains of the system were varied;

however, the integrator was required in particular to obtain zero steady-

state error. Figure 8 shows the effect of varying the integrator con-

stant KI on the motion in bank when the airplane is disturbed from trim

by a step input of CZ = O.O1. As KI is increased, the airplane returns

to its initial trln_ed position much faster but, with further increase

in KI, the motion becomes oscillatory and will become unstable for larger

values of the integrator constaut. If, therefore, the integrator is an
essential component of the system to obtain satisfactory response and

reduces the steady-state error to zero when the airplane is disturbed by

a gust, it is of interest to know the effect of the integrator on the air-

plane response to a step-c_mm_ud input. This effect is shown in figure 9.

The solid-line curve in this figure represents the type of response obtained
to a 60° bauk-angle command without an integrator. In general, the

response is excellent. With the integrator included in the system, the
motion ov__rshoots the comnauded 60° bank angle and the response time, the

time required for the motion to reach and remain within _ percent of the

steady-state value, is increased. This overshoot increases and the motion

becomes oscillatory as the integrator gain is increased. In an attempt to

improve the airplane response to a step-command input with an integrator

present, the gains of the system were varied in order to obtain a more

satisfactory response. First, more rate feedback was added to the system.
For comparative purposes, in the lower part of figure 9 the dashed-line

curve is replotted and c_red with the solid-line curve which corresponds
to a case which has double the rate feedback of the dashed-llne curve. It

is noted that the peak overshoot is not reduced and the time required for

the motion to reach steady state is increased. The forward-loop gain was

then varied. Figure lO shows that a marked improvement in the command

response can be realized by increasing the forward-loop gain. As the gain

is increased, the overshoot is eliminated and satisfactory response is

obtained. However, further increase in KE causes the airplane to respond

faster but once again introduces overshoot. This overshoot due to the

forward-loop gain results frQm insufficient damping in the roll oscillation

and can be eliminated by rate feedback. The lower part of figure lO shows

this effect. Thus, from a linear analysis of the problem, one can deter-

mine combinations of the gains in the system which will result in a very

satisfactory response in bauk.

The importance of taking into account the limits on control deflec-

tion and rate of control-surface deflection is shown in figure II. As an

example, the case which resulted in a satisfactory response in bank that

was based on the linear analysis was selected. The solid-line curve corres-

ponds to the case where 8 is limited to 20° and 8 is limited to 120°/sec.

If the maximum rate of control deflection is reduced to 40°/sec, the motion

becomes oscillatory with a large, amount of overshoot, although the rise tlme
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is not seriously affected. If the limited value of 5 is reduced to 9O,

the stability is improved but the rise time is much slower. By knowing

the maximum values of 5 and 6 for which the airplane and hydraulic

servomotor are designed, the values of gain constants could be selected

to give good response in bank. For example, with limits on 5 of 20 °

and on 6 of 40°/sec, the motion may be stabilized by introducing addi-

tional rate feedback into the system (see lower part of fig. ii).

In comparing the solid-line curve in the top plot with the solid-line

curve in the lower plot, it is seen that the rise time for the system with

a lower limited value of 8 and the proper gain values is slightly longer

than for the higher limited value of 8 and the corresponding combination of

gains for an input command or 60 ° bank angle. However, for smaller input

co_nand signals, the rise time for lower 6 is appreciably longer than

the rise time obtained for higher 5. The reason is that for smaller

inputs little limiting takes place and, thus, the system optimized for

lower 5 has too much damping which tends to slow up the response.

Where limiting causes a lightly damped oscillation in the airplane

motion, introducing acceleration feedback may have a pronounced stabil-

izing effect, particularly for airplanes that have a relatively low moment

of inertia in roll.

In conclusion, the results of the preliminary study indicate that,

for both roll control systems investigated, satisfactory response to com-

mand inputs is obtained, provided the rate and physical limits of control

deflection are high. By taking account of the maximum value of control

displacement and control rate, the system may be optimized by proper

selection of the gains. However, the motion will be faster for all mag-

nitudes of input command signals as the values of the limits are increased.

If the airplane is disturbed by a gust, the integrator present in

both systems reduces the steady-state error to zero but the compensating

network does not cancel the airplane dynamics from the response.

With a compensating network system, incomplete compensation will

result if the estimated value of Cn_ used in designing the network is

less than the actual Cn_ value of the airplane. However, if rudder

control is used to maintain zero sideslip during the maneuver, the roll

control systemmay not be sensitive to the inaccurate estimate of Cn.

With a conventional attitude-roll control system, the Dutch roll

oscillation present in the sideslip motion is effectively stabilized

through use of a yaw damper but the steady sideslip angle is increased.
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APPLICATION OF STATISTICAL THEORY TO THE REDUCTION

OF NOISE EFFECTS IN MISSILE GUIDANCE

By Elwood C. Stewart

Ames Aeronautical Laboratory

Noise is a general term often used to describe certain random

unwanted effects which tend to reduce missile accuracy in hitting the

target. It might be, for instance, atmospheric turbulence, enemy coun-

termeasure devices, or any of a number of extraneous electrical signals.

The particular type of noise to be considered in this paper is known as

scintillation or glint noise (refs. 1 to 4) and results from the ina-

bility Of the radar to determine the exact target location due to its
variable reflection characteristics.

The manner in which scintillation noise affects the gdidance system

can be seen from figure 1. For purposes of illustration, typical samples

of target motion and noise are shown separately and at different vertical

and horizontal scales in order to emphasize the large target motions

involved. In the actual case, however, the guidance system can detect

only the sum of these two signals indicated in this figure as the apparent

target position. The guidance system must then utilize this apparent

target information and attempt to make the missile position coincide as

closely as possible with the true target position. Thus, the error which

represents failure to follow the true target motion should be minimized.

This problem is analogous to one previously encountered in the communi-

cations field which has led to a statistical theory known as the Wiener

filter theory (refs. 5 and 6). This paper deals with the application Of

this theory, later developments to this theory, and the aerodynamic

implications involved in the design of a missile-guidance system.

The time histories of target motion and noise shown in figure i

are typical of those which might be encountered in an attack against

a large bomber. The target motion shown here represents an evasive

maneuver consisting of constant-acceleration turns of random duration.

Inputs such as these can best be described statistically in terms of

spectral density, which is a measure of the energy distribution in the

frequency spectrum. Figure 2 illustrates the spectral densities for

both target motion and noise. It can be seen that the target-motion

energy is concentrated at the lower frequencies, as is typical of all

target motions, while there is appreciable noise energy at the higher

frequencies. This suggests that the guidance system should be designed

to have good low frequency response with minimum response to the higher

frequencies. If the target motion and noise spectral-density character-

istics are known, the Wiener filter theory prescribes the optimum linear
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characteristic or transfer function which will minimize the error sta-

tistically in terms of root-mean-square, or rms, error. The details of
the method are involved and are not described.

For the input characteristics shown in figure 2, the Wiener theory

has been applied to different magnitudes of the noise as represented by

the low frequency ordinate of the noise spectral-density curve. The

results are shown in figure 3. According to the Wiener theory, the

dashed curve represents the theoretical lower limit of error corre-

sponding to various noise magnitudes. The value of this result is

twofold. First of all, this curve can be used as a standard to compare

with the performance of other systems. Secondly, since each point on

this curve corresponds to a different transfer function, this transfer

function can be used as a guide in designing the guidance system. One

question which arises, however, concerns the proper noise magnitude on

which to base the design. In practice the guidance system may be forced

to operate anywhere within the large operating band shown in figure 3,

depending on the particular target. If the system is optimized only at

some midrange value of noise, indicated in figure 3 as the design value,
the solid curve is obtained. It can be seen that the increase in error

above the optimum envelope is insignificant over the range of interest.

Thus, it is necessary only to consider systems optimized for the design
value of noise.

It is interesting to compare these results with the performance

obtained by disregarding noise theory in the design. As an example,

the upper curve in figure 3 shows the noise performance of a typical

guidance system which was optimized for a target motion with no noise

present. The comparison of this curve with the optimum curves shows

that significant reduction of error can be achieved by the use of this

theory.

In order to apply the Wiener theory to the design of a beam-rider

guidance system, consider figure 4 which shows this system in greater

detail. It consists of a tracking radar, either ground based or air-

borne, and a servocontrol system which guides the missile along the radar

beam. In general, it is possible to adjust the frequency characteristics

of this system in a great variety of ways. For instance, alterations can

be made to the response characteristics of the tracking radar, to the

control system in the missile, or even to the airframe characteristics.

In any case, it is desired to match the frequency characteristic pre-

scribed by the Wiener theory as is indicated in figure 5 in terms of

amplitude and phase. This characteristic can be achieved by a linear

sytem either in the tracking radar or in the missile control loop. In

general, however, these linear designs demand excessive values of certain

quantities such as the amount of control motion, the rate of control

motion, and certain voltages in the circuit. In a practical case there

are limitations on these quantities. The effect of the nonlinearities

4 _
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just discussed was explored in an analogue study in which these nonline-

arities were simulated. The approach used was to design the over-all

guidance system to be optimum in the linear range. The results obtained,

then, by operating in the nonlinear regions are shown in figure 6 by the

upper curve. Essentially this same result is obtained by altering the

frequency characteristics in either the missile control loop or the

tracking radar. For comparison the previous optimum result corresponding

to no limitations is repeated. The difference between these two curves

represents the increase in error which is caused by the effects of the

nonlinearities. The most serious of the many nonlinearities is due to

surface-deflection limiting which is caused by physical stops. This

type of limiting is illustrated in figure 7 by the dashed time history.

This figure shows that limiting occurs over an appreciable portion of

the t_me.

This limiting of the control motion occurs, of course, because the

system was designed according to linear theory which assumes an unlimited

amount of surface deflection available. A more realistic approach would

be a synthesis procedure which in some manner considers this limitation

on surface deflection. The theory for such an approach is available in

a recent paper on a modification of the Wiener theory by Newton (ref. 7).

With this theory it is possible to synthesize a guidance system so that

limiting deflections are seldom called for. This fact is illustrated

by the solid curve in figure 7. In this approach, the maximum value of

the surface deflection is kept below the limited value by reducing the

rms value sufficiently. In this way the probability of the control

motion exceeding the limits can be reduced to a low value. The design

procedure, then, is to adjust the guldance-system frequency character-
istics so that both the rms error is minimized and the rms surface

deflection is made small enough so that actual limiting hardly ever

occurs. Thus, the guidance system is forced to remain linear.

The effect on the rms error of reducing the surface deflection by

this procedure is shown in figure 8. The minimum error according to the

Wiener theory is shown as the horizontal llne. As discussed previously,

this error can be obtained only with prohibitive surface deflections.

However, as the maximum surface deflection is reduced from these large

values in a manner which results in minimum error, the curve shown in

figure 8 is produced. This curve represents the theoretical lower limit

of error corresponding to various amounts of maximum surface deflection.

Each point of the curve is achieved by a different guidance-system transfer

function. It should be pointed out that, since the surface deflection is

actually a statistical quantity, the maximum deflections indicated in fig-

ure 8 represent values which are exceeded less than 5 percent of the time.

The interesting feature of this curve is that, as the surface deflection

is reduced from these large values, the minimum error increases extremely

slowly. At a realistic surface-deflection value of perhaps 15°, for which

limiting hardly ever occurs for this particular missile, the error has
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increased only 6 feet. This result is surprising inasmuch as the increase

in error is very small for such a tremendous reduction in surface deflec-

tion. The significance of this result is that the optimum Wiener result

can be approached very closely by confining operation of the system to

the linear range.

It can be shown that this design is far superior, in many respects,

to the previous design in which limiting is allowed to occur. For this

purpose the upper point in figure 8 is shown to correspond to the dashed

t_me history of figure 7 which limits a portion of the time. Comparison

of the curve in figure 8 with the upper point shows that linear oper-

ation of the control motion results in a somewhat smaller error than for

the limited case. From an examination of the time histories of fig-

ure 7, it can also be shown that the linear case (solid line) consumes

about one-third of the servo energy of the limited case, inasmuch as the

movement of the control surface is much less. There is a similar advan-

tage in the magnitude of the yawing angle, which is important in drag

considerations. There is also a reduction of voltages within the cir-

cuit to reasonable and easily obtainable values. Thus, this linear

design not only produces a smaller error 3 but it is accompanied by many
desirable effects.

The main assumption that is involved in obtaining the results of

figure 8 is the given aerodynamics. Because this is a somewhat arbitrary

choice it is desirable to know the effect of this aerodynamic choice on

the minimum-error curve. In a study of this problem it has been found

that, for other configurations designed for an acceleration of lOg, the

same error curve is obtained. This means that for a wide range of air-

frame dynamics the guidance system can be designed to produce about the

same results. In this manner it is concluded that the minimum attainable

error is relatively independent of the dynamics of the airframe.

The dynamics, however, are important in determining the complexity

of the electronic shaping circuits. Figure 9 can be used to illustrate

this effect. In this figure the previous optimum characteristic is

repeated, and, in addition, the aerodynamic response is shown for a

typical current missile. The difference between these two curves would

ordinarily be supplied electronically by the remainder of the system.

However, if an airframe could be designed with frequency characteristics

approximating the optimum curve, no frequency shaping would be required

from the remainder of the system. It appears that this approach is

extreme. For example, one way of achieving the optimum characteristic

in a completely aerodynamic way is by the use of a statically unstable

missile which may be undesirable from other aspects. Other approaches

may be possible, but in the light of present studies this approach

appears impractical.

If the aerodynamics are confined more closely to the typical aero-

dynamics, the complexity of the electronic circuits can still be simplified
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by aerodynamic redesign. For example, some simplification can result by

eliminating the two peaks in the aerodynamic response. In this case the

aerodynamics would be represented by the dashed line in figure 9- This

curve could be achieved in two ways. First, it could be achieved on a

variable-incidence missile by adjusting the position of the center of

gravity and the aerodynamic center so that the rate of change of pitching-

moment coefficient with control deflection is zero. In this manner the

two peaks in the aerodynamic response would occur at the same frequency,

thus canceling each other. This corresponds to a missile which develops

all its lift by the movable control surface. A second alternative would

be to decrease the magnitude of the two peaks. Both these peaks are due

to the small aerodynamic damping term. Thus, a large increase in this

term of possibly tenfold to twentyfold would tend to smooth out these

peaks so as to approximate more nearly the dashed line. This is a

greater change than can be obtained by conventional aerodynamic means,

although it appears feasible by the use of a free-floating surface as

is discussed in subsequent papers by Howard J. Curfman, Jr., H. Kurt

Strass, and Harold L. Crane and by Charles W. Frick, Henry C. Lessing,

and Murry Tobak.

In summary, it appears that statistical theory can be a useful tool

in the process of guidance-system design. The following observations
have been made:

1. The Wiener filter theory establishes a goal and serves as a
design guide even in nonlinear cases.

2. The modified Wiener theory indicates that in a practical case

nearly optimumresults can be achieved by confining operation of the

guidance system to the linear range.

3. The achievement of the mlnlmumerror is relatively independent
of the dynamics of the airframe.

4. In the interests of simplicity of the electrcmic system, the

most desirable airframe characteristics are, first, that prescribed by

Wiener theory as indicated by _le opti,_mcharacteristic in figure 9,

and, second, one in which the peaks in the response curve are eliminated

as shown by the dashed line in this same figure.

f_
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INVESTIGATIONS TOWARD SIMPLIFICATION

OF MISSILE CONTROL SYSTEMS

By Howard J. Curfman, Jr., H. Kurt Strass,
and Harold L. Crane

Langley Aeronautical Laboratory

INTRODUCTION

Simplicity in control-system design is a desire shared by all. The

motivation behind this desire is the somewhat elusive factor known as

reliability. It is readily recognized, therefore, that the simplifica-

tion of the control system should lead to improved reliability without

sacrificing system performance in the ultimate accomplishment of the

desired .....

In general, the approaches to the problem of simplification of con-

trol systems must be by new ideas and unique applications or by reevalu-

ations and modifications to current or past ideas. The Sidewinder missile

developed by the Naval Ordnance Test Station (ref. l) and the idea to be

presented by Robert A. Gardiner in a subsequent paper are two examples of

a basic simplification in missile control systems.

While most of the remarks and ideas presented in this paper seem

more readily applicable to missile systems, it is evident that these

points or some of their corollaries have direct application to airplane

control systems. It is the purpose of this paper to present three ideas

that have been investigated. These data will not represent complete

systems but rather will represent features and principles that should

lead to simplification of control systems.

AUTOROTATING-VANE SPOILER

The first part of this paper deals with an autorotating-vane

spoiler. The proposed control method using the autorotating spoiler

is the "bang-bang," or flicker, or plus-minus type of control; that is,

the spoiler is so arranged as to give either an up or down lift incre-

ment at all times. Figure 1 shows a typical installation of an auto-

rotating spoiler. From the cutaway view, it is noted that the spoiler

consists of two vanes pivoted on a common shaft which passes through

the wing. The vanes are oriented at right angles to each other, as

shown; hence, each quarter rotation of the spoiler assembly would cause
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the vanes to alternately act as spoilers on the top and bottom of the

wing. The shape of the spoiler is such as to make the assembly auto-

rotate. Thus, the power that actuates the control is aerodynamic.

To allow control operation to be as desired, an escapement mecha-

nism is used to limit the assembly to intervals of one-quarter revolu-

tion. Hence, it is necessary for the intelligence device of the con-

trol system to "decide" when the escapement should be released; however,

no great amount of power is required to actuate the escapement mecha-

nism. For example, a small solenoid might suffice. Thus, no servo-

motor is required, and such an arrangement is readily adapted to a thin

wing. Such a system might find use with short-range bombs where the

simple, flicker control is sufficient and where the additional drag

may not be too critical. Since the spoiler effectiveness can be esti-

mated, for example, by the methods suggested previously in the paper

presented by John G. Lowry, the first consideration is concerned with

how well this spoiler assembly will operate.

Details of the design of the autorotating spoiler tested are shown

in figure 2. Only one vane is shown. The inertia given is that of the

entire assembly. The design of the vanes is important since the con-

figuration must autorotate.

The results of tests run in a blowdown jet at the Pilotless

Aircraft Research Station, Wallops Island, Va. are presented in

figure 3 in a plot of the operation time of the autorotating spoiler

as a function of sea-level Mach number. This operation time was meas-

ured as the time from release of the escapement until 90 ° of rotation

was obtained. This lag time is important since it directly affects

the hunting oscillation of the bang-bang system. The control response

time averaged about 0.01 second throughout the Mach number range. The

aerodynamic lag involved was at most 5 percent of the lag shown. The

spoiler response is essentially independent of wing size; therefore,

the response was made nondimensional by giving the time required to

operate in spoiler lengths. This plot is shown at the bottom of the

figure, where the response varied from 40 spoiler lengths at M = 0.5

to 85 lengths at M = 1.6. As noted, these results were the same for

angles of attack of 0° and 7° . Within reasonable limits, increasing

spoiler height does not increase the operation time, provided the

thickness is unchanged. Increasing spoiler length increases the time

to operate in proportion to the square root of the length, also with

thickness unchanged. In addition to the blowdown-jet tests, the

assembly has also been tested on the transonic bump of the Langley

high-speed 7- by 10-foot tunnel and was found to autorotate satisfac-

torily throughout the transonic region.

Flight-test results of a rocket-powered model equipped with the

autorotating-vane spoiler are presented in figure 4. These tests

I I
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showed that the spoiler arrangement having slightly less area than

2 percent of the exposed wing area gave the rolling effectiveness

desired in the supersonic region. The use of several small spoilers

is, of course, a logical extension of this idea if a greater effec-

tiveness is desired, and the results presented previously in the paper

by Lowry can be used to obtain the effectiveness at angles of attack

greater than those small values encountered in these tests. Approxi-

mately the same drag should be experienced as that attained with a

flicker system using conventional flaps.

BELLOWS FLAP

Another scheme that has been investigated is a bellows-actuated

flap. This scheme, of course, is not a new idea, having been consid-

ered both in this country and abroad in the past. The current study

was begun as a reevaluation of this idea with particular emphasis to

relieving some space requirements in missiles for control-system power

supplies and actuators. Higher speeds have introduced increased

d_mic pressures which, of course, offer promise to such a system.

Thin surfaces, too, have led to difficult problems concerning torque

rods and actuating methods for control surfaces.

A schematic arrangement of the bellows-operated flap is shown in

figure 5. It consists of an airtight, flexible chamber installed

beneath a split flap and vented through a controlling valve to impact

or base pressure. The design of the valves would precisely control

the flap deflections. Although the sketch shown has the split flap in

a particular chordwise position, the principle allows a very compact

arrangement and split flaps at the trailing edge are equally feasible.

The bellows-flap arrangement is one which literally supports the con-

trol against hinge moments, rather than twisting the control surface.

Results of a free-flight test of a rocket-powered model equipped

with the bellows flap are shown in figure 6. The split flap was on the

top surface of one semispan wing only and was located as shown. This

flap was operated as rapidly as possible within the limitations of the

existing air intake and distribution system. This operation was essen-

tially in a square wave manner. The wing section at the flap midspan

was 3-7 percent thick, and the bellows was of the simplest design.

The maximum control deflection is shown by the solid curve, and the

dashed curve shows the rolling effectiveness of the split-flap aileron.

The other curve shows that the split-flap effectiveness is essentially

the same as that of a conventional trailing-edge aileron of the same

chord and spanwise location. Improved bellows design will permit a

large increase in maximum flap deflection.

_b
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The operation time in seconds required for the flap to move to full

deflection is shown as the solid line in the lower part of this figure.

The time of operation varied from 0.035 second at M = 0.7 to 0.02 sec-

ond at M = 1.9. In nondimensional terms (the dashed curve), the time

required for flap operation varied from 280 flap chords traveled at

M = 0.7 to 400 flap chords at M = 1.9. It should be pointed out that

the rate of flap deflection could be varied considerably by changing the

capacity of the air-distribution system in relation to the bellows volume.

Such a system need not operate as a flicker or bang-bang system as

described. Proportional operation of the flap has been obtained by proper

valve design. One factor involved_ of course, in such an arrangement is

the effect of the valve size on the air flow. Also, since the pressure

tending to close the flap is usually much less than that for opening it

(the base pressure being smaller in magnitude than the impact pressure),

the flap will always be somewhat slower in closing, although the design

of the system can remove almost completely this feature.

FREE CONTROLS

Another approach toward simplification of control systems would be

to improve the aerodynamic response characteristics of the airplane or

missile and hence obviate the need for some automatic control equipment.

For example, if the original aircraft had better damping characteristics_

some automatic control devices might be eliminated, or at least made less

complex. It is well known that the floating characteristics of free con-

trols can alter the damping of an aircraft over a wide range. The prin-

ciple of using free controls to improve the response of aircraft is, of

course, not new. The works of Greenberg and Sternfield (refs. 2 and 3)

and others offer a sound foundation. It appears, however, that a reevalua-

tion and investigation of this principle, particularly with regard to

missiles, would be fruitful. The remainder of this paper will present

illustrations of this approach and its effectiveness.

To illustrate this approach, consider as an example the problem of

lateral damping of some current airplanes. It is known that if the rudder

is freed during a lateral oscillation, the effects of control-surface

floating characteristics and friction in the control system have led to

snaking or very lightly damped oscillations, that is, oscillations that

were reinforced by aerodynamic moments induced by the floating control.

The first question that naturally arises is what are the control-surface

characteristics required to improve the damping. A conventional stability-

boundary plot, a typical one of which is shown in figure 7, can answer

this question. This plot is for the lateral case of an airplane at

M = 0.7 and an altitude of i0,000 feet and is in terms of the rudder

hinge-moment derivative and the rudder floating tendency
Ch_ Ch¢"

q_
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A positive Ch_ is for a rudder that floats against the wind, the nega-

tive value for a rudder that floats with the wind. The floating tendency

is the action that causes control motion, and it is the response of the

control surface, as manifested by Ch5 , Ch_ , inertia, and such factors,

that phases the resultant moments so that the aircraft motion is affected.

In addition to the usual oscillatory and divergence boundaries are shown

lines of constant time to damp to half amplitude. For example, if the

time for the airplane to damp to half amplitude T1/2 is 2.8 seconds,

the line so labeled defines the region that will improve this damping.

If twice the damping is required, the line labeled T1/2 = 1.4 seconds

defines this region.

Flight tests were made of an airplane having lightly damped lateral

oscillations as shown at the top of figure 8. In these flight results

the pilot had disturbed the airplane and had released the rudder when

zero time was plotted. The typical motion shown in the lower part of

the figure is the result when the rudder characteristics have been modi-

fied. In this latter case the aircraft had an auxiliary viscous damper

on the rudder, a feature that alone did not offer sufficient improvement

to response of the original configuration.

A sunmmzuy of results of several flights at Mach numbers up to 0.7

at altitudes of lO, O00 and 50,000 feet is shown in figure 9. On this

conventional plot of T1/2 against period, where the hatching represents
the unsatisfactory side of the boundary, the circles represent rudder-

fixed oscillations, the squares the original rudder free, and the diamonds

the modified rudder free. The improvements are such as to make the air-

plane meet the period-damping specifications at lO,O00 feet and to be

nearly satisfactory at 30,000 feet.

The use of free controls to augment the longitudinal damping of

missiles has been studied for a canard-missile configuration that has

been used by the NACA in automatic-control studies. A typical plot of

the longitudinal stability boundaries of a missile at supersonic speeds

is shown in figure lO. For the condition where the free controls are

forward of the center of gravity, the oscillatory and divergence boundaries

are reversed; that is, a control that floats against the wind leads to a

divergence. Th_ reference line of constant T1/2 = 0.194 second shown

is representative of the missile damping with controls fixed. Thus, to

improve on this damping, the region shown represents the values of Ch_

and Ch5 that must be used.

Figure ll shows the effects of these free-floating canard controls

on the damping of the missile. The configuration is shown in outline form

and has 60 ° delta wings and canard controls. The dashed curve shows the
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angle-of-attack response of the missile with controls fixed, while the

solid line shows the response with free-floating canard controls. Since

the frequency of the oscillations is only slightly changed, the action

of the free surfaces has been almost exclusively to give damping. In

this case the aircraft damping has been changed from about I0 percent

to nearly 50 percent of the critical damping. For comparison, the long-

short dashed curve is the result of flight tests of this same missile

equipped with a rate-gyro servo arrangement for improving the damping

(ref. 4). The solid curve in the figure is a calculated result, while

the other curves were oLtained from flight data. A recent flight test

of a different canard configuration investigating this principle showed

essentially the same results. These data were not available for pres-
entation here.

It is emphasized that a separate control for damping is not a neces-

sity, since by effective design the same surfaces can be used for damping
as well as for control.

SUMMARY

In summary, tb_ree ideas have been discussed that could lead to sim-

plification of control systems. These systems have included the auto-

rotating spoiler and a bellows-flap arrangement, which have been discussed

as bang-bang or flicker systems, although control-valve design would allow

proportional operation of the bellows flap. The use of free controls has

also been discussed with regard to improving airplane lateral oscillations

as well as the longitudinal damping of a canard missile configuration.
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INFLUENCE OF CONTROL-SURFACE AERODYNAMICS ON

MISSILE SIMPLIFICATION

By Charles W. Frick, Henry C. Lessing, and Murray Tobak

Ames Aeronautical Laboratory

-%

%

In the previous paper, Howard J. Curfman, Jr., H. Kurt Strass,

and Harold L. Crane discussed research directed toward simplifying mis-

sile components. The present paper explores this field of design fur-

ther. In the presentation of these ideas, the terminology conforms with

that associated with missile design practice, but, insofar as possible,

familiar aerodynamic symbols are used in the mathematical definition of

these terms.

In figure 1 is shown a block diagram of a guided missile, the vari-

ous blocks depicting cGmponents of the over-all missile system. This

particular arrangement of blocks was selected for the purpose of illus-

trating the ideas of this paper. In the upper half of this figure is

the longitudinal dynamic system including the seeker dynamics which

translates the mlssile-target geometry into an error signal, the gain

adjuster which accounts for variations in the Mach number and flight

altitude, the servomotor which actuates the control surface, and the

airframe which responds with a turning rate. One feedback loop is shown

incorporating a rate gyro which is required to provide adequate damping

of the longitudinal motion, particularly at high altitudes. In the

lower half of this figure is shown a roll dynamic system, incorporating

a rate gyro as a sensing device, which provides a loose control of the

rolling rate of the airframe.

Certain of these blocks represent complicated electronic circuits

which probably can be simplified or eliminated by proper design of the

airframe, particularly the gain adjuster, the servo itself, and certainly

the rate-gyro feedback loop. In addition it appears possible that the

electronic circuits represented by the block diagram associated with the

roll dynamics can be eliminated.

It is desirable because of the nature of the subject to define cer-

tain terms and symbols which are noted in figure 2. Throughout this

paper the time rate of change of the angle 7 in response to a deflection

of the control surface 5 is of primary concern since this parameter is a

measure of the target-seeking properties of a missile with a perfect

seeker. This parameter defines the rate of turn of the missile. The

first portion of the discussion is concerned withmissile performance

criteria best shown by the amplitude curve of the frequency response of

the missile, which is a characteristic curye showing the maximum amplitude
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of variation of the t_zPni_ rate for a slnusoidal control

motion of unit maximum magnitude. The points of interest on this

frequency-response plot are point A, the zero frequency gain, point B,

the natural frequency, point C, the infinite frequency gain, and point D,

the minimum response frequency. Point E is also of interest since the

peak amplitude determines, in large part, the response time of the

missile.

The first portion of the discussion is concerned primarily with

point A, the zero frequency gain, and to some extent point B, the natu-

ral frequency. Points C and D are not discussed_ however, they are

important in noise studies, such as were discussed by Elwood C. Stewart.

If the missile is equipped with a perfect position servo, the expres-

sion derived for the gain or the steady turning rate is shown in fig-

ure 3. For this servo system, the movement of the crank c is equal to

the deflection of the control surface. Note that in the expression for

the gain, the dynamic pressure q and the Mach number appear explicitly.

Mach number also enters into the aerodynamic parameters. Because of this

dynamic-pressure term, a variation of altitude of from 5,000 feet to

60,000 feet will result in the gain or turning rate varying by a factor

of lO. This variation is considered unacceptable since it means that

target-seeklngmaneuvers are optlmumfor only one altitude, the accuracy

becoming impaired as the missile departs from that altitude. This is

the reason for what was previously described as the gain adjuster. The

natural frequency varies with the square root of lO or 3.3, which is

acceptable.

It has been pointed out previously that it might be possible to

utilize the aeroelastlc properties of sweptback control surfaces to com-

pensate for the effects of dynamic pressure and to eliminate the gain

adjuster from the system. It was found possible, for instance, to reduce
l through the use of aeroelasticity.

the gain variation from l0 to about 2_

Further studies in this respect have now been made.

For instance, the frequency response of a missile equipped with a

perfect position servo with a spring inserted in the torque tube driving

the control surface has been studied. An examination of the expression

for the gain in figure 4 shows that the dynamic pressure still appears

in the expression. Its influence may be modified, however, by adjusting

the relative magnitude of the two terms in the denominator. The intro-

duction of a spring (k) in the torque tube permits the hinge moments of

the control surface to influence the gain, thereby extendingthe influ-

ence of the airframe on the missile response.

The frequency response for two Mach numbers and two altitudes with

this spring-position control and with a perfect position servo (no springs)

_b
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is shown in figure 5- It will be noted that the use of the spring in

the torque tube has reduced the gain variation with altitude from lO

to 0 at both Mach numbers but that there still remains some variation

in the gain with Mach number. A part of the beneficial effect shown

was obtained by shifting the center of gravity rearward. There is a

somewhat adverse effect on the variation of the natural frequency with

altitude. All in all, however, there seems to be a significant net

improvement in the frequency response.

As a further extension of this scheme for modulating the turning

rate of the missile, consider what occurs if the spring constant k is

permitted to become very small; in this case, the result obtained is
shown in figure 6.

The expression shown gives the turning rate _ in terms of the

hinge moment _ about the torque tube corresponding to a servomotor

which simply specifies a torque about the control-surface hinge in

response to an error signal. It will be noted that, in the expression

for the gain of the airframe with a perfect torque servo, the dynamic

pressure no longer appears; Mach number still appears explicitly, but

the Mach number influence on the aerodynamic terms has been minimized

since the aerodynamic terms in the nmnerator and denominator are affected
in the same manner.

The frequency-response curves for Mach numbers of 1.5 and 2.5 for

altitudes of 5,000 feet and 60,000 feet for the airframe with a perfect

torque servo are shown in figure 7- It will be noted again that the

variation in the gain with altitude has been reduced to a very small

value. Furthermore, the variation in natural frequency with altitude

is less than it w_s for the position servo with a spring in the torque

tube. These results, together with those previously discussed, demon-

strate the feasibility of simplifying missile components by eliminating

the gain adjuster from the system. The aerodynamic design of the missile

airframe is, of course, more complex but this is a favorable exchange for
increased reliability.

The foregoing discussion has been concerned primarily with the

steady turning rate of the missile with a view toward finding simple

ways of achieving the same turning rate for all altitudes and Mach num-

bers in response to a unit error signal. Another important point involved

in missile performance is the length of time required for this steady

turning rate to be realized. This time is known as the response time.

In order to illustrate the ideas involved in the subsequent discussion,

it is best to study what is known as the transient response or, in other

words, the history of the missile turning rate over a period of time

during and subsequent to a certain control motion.

_v
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In general, if a perfect position servo is assumed, the control sur-

face responds with a step change in deflection due to a step change in

error. The transient response of interest then is the response of the

airframe to__a step change in control moment. In figure 8 is shown such

a transient for a missile flying at a Mach number of 1.5 at an altitude

of 60,000 feet. It is evident thatj because of the low damping of the

oscillatory response_ a time for a steady turning rate to be reached is

very large. Usually the response time is reduced by providing the rate-

gyro feedback loop which was noted on the block diagram. The question

that arises is whether the same result can be achieved without this

complic at ion.

In order to get at the basic elements of the problem, the idealized

missile-alrframe turning-rate response to a step change in the error sig-

nal is specified as shown by the dashed line. Assume that a reasonable

minimum response time possible for a given airframe is the time to reach

the first peak of the oscillatory response due to a step change in con-

trol moment. With this idealized response, the control-moment input over

the time period of the transient turning rate can be calculated. The

result is shown by the dashed lines in the control-moment plot on the

right. The control-moment transient is seen to vary greatly with the

specified turning-rate response. In this case, however, the control

input is nearly the same as that usually obtained by a position servo

with airframe pitching-rate feedback. In this study, it has been found

that the same control input can be provided by using an auxiliary flap

as shown in figure 9.

The auxiliary flap is hinged on the rear wing of the missile and is

restrained in its motion by a torque spring. The flap is mass over-

balanced and is therefore driven by the response of the mass overbalance

to the pitching acceleration and the normal acceleration of the airframe.

For this airframe, the response to an error signal is initiated by the

deflection of the forward control surface which gives the first portion

of the moment input given by the dashed line of figure 8. During this

time the missile is undergoing a pitching acceleration which causes the

auxiliary flap to assume the positive deflection shown (trailing edge

down). As the normal acceleration builds up, the flap moves to negative

deflections. The transient moment provided by the flap is therefore simi-

lar to t_hat required for the idealized response. If a viscous damper is

provided, the flap motion can be delayed sufficiently to give the required

control-moment input. The transient-response curves of figure 9 show the

results of simulator studies of this missile airframe. It will be noted

that, as the driving hinge moment of the auxiliary flap is increased by

increasing the mass overbalance as measured by the ratio of steady deflec-

tion of the rear flap A to that of the forward control 5, the idealized

response of figure 8 becomes more closely approximated. Effectively, this

flap increases the damping of the airframe by a factor of lO.

I
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This auxiliary flap, of course, is essentially the same as those

discussed by Howard J. Curfman, Jr., H. Kurt Strass, and Harold L. Crane.

It serves, together with the forward control surface, to give a time his-

tory of pitching-moment input that results in a short response time. It

is believed that the possibility of achieving short response times with

the airframe bY programlng the control-moment input has special signifi-

cance in missile simplification. The highly damped transient response,
for instance, may permit the use of on-off control motions which allow

the substitution of relays for amplifiers. Robert A. Gardlner discusses

such a flicker control system in the next paper.

In studying this airframe, it was thought that perhaps the auxiliary

flap could be utilized in roll as well as in pitch. The hinge-moment

parameter was adjusted by using a horn balance since it was known that

the horn balance would be more effective in roll in providing hinge-

moment changes than it is in pitch. It was thereby possible to get the

flap to lead the roll motion. The response in roll to a step rolling

moment is shown in figure 10. The analysis indicates that the flap acts

as a fairly satisfactory roll damper. In this case it gives a reduction

in rolling rate of some 60 percent. Further studies of such devices may

indicate that the use of the roll-rate stabilizing system which was men-

tioned previously in connection with the block diagram can be eliminated.

The preceding discussion has been concerned with missile types now

in p]ann_g or undergoing actual firing tests. Generally speaking these

missiles are large, carry large warheads, and have large-span wings. Those

of the air-to-air type contribute prohibitive drag when mounted externally

on supersonic aircraft and gives a not insignificant increase in drag when

carried internally. It is felt that something can and should be done

about reducing missile sizes significantly without impairing performance.

The accomplishment of this objective, of course, will depend in large

measure on advancements in electronic design, particularly miniaturiza-

tion. Concurrently, it will require aerodynamic investigations of mis-

sile airframes suitable for internal storage, possibly designed to be

fired from tube launchers, similar to those now used for the _. -inch

folding-fin rockets. As a part of this aerodynamic program one missile

airframe, shown in figure ll, has been investigated.

These data are a brief summary of the maximum-normal-force capabili-

ties of an airframe with projecting controls as determined in very recent

tests. The control surface of the missile consists simply of a segment

of the nose which is pivoted outward; its deflection is measured from

the flush position. It is interesting to note that this particular con-

trol gives high values of the maximum normal force, particularly at the

higher Mach numbers, illustrating the importance of body lift at these

Mach numbers. The normal force attainable is higher than that of an

equivalent winged missile at Mach numbers greater than 2.4. It should
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be a why higher normal forces are obtained is that

the longitudinal stability of the missile with the folding control

decreases with increasing Mach number. The control effectiveness Cn_

remains essentially constant with Mach number. For this comparison both

missiles have the same frequency at M = 2. Controls of this type, which

are suitable for tube-launched missiles, need further investigation, but

it is believed that the results presented indicate chat the maneuverability

of tube-launched missiles need not be significantly less than those of more

conventional design especially at Mach numbers greater than twice the speed

of sound. Incidently, the angles of attack at which these normal forces

are attained are roughly the same for both airframes, about 16 ° .

In summary, it can be shown, on papSr at least, that some simplifica-

tion of missile components can be achieved by spending a little more inge-

nuity in airframe design. The practicality of these schemes needs proof

through airframe flight tests since there are problems of cross-coupling,

nonlinear hinge moments, and so forth. It is my personal belief, however,

that a net improvement in missile reliability may come about from these

and similar studies.

I
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A CO_[BINED AERODYNA_V_C AND GUIDANCE APPROACH FOR

A SI_[PLE HOMING SYST}_.q

By Robert A. Gardiner

Langley Aeronautical Laboratory

i

This paper deals with the study of a system in which simplicity was

achieved by eliminating many components. The basic idea of this system

involves the use of aerodynamics to help in reducing homing-system com-

plication and aid in increasing missile reliability. By using flicker

controls operating directly from the target position as a primary refer-

ence, by using the rolling of the missile to scan the seeker field of

view, and by using a rotating lift vector, several control system and

guidance functions may be eliminated from an air-to-air missile with a

corresponding increase in ruggedness and simplicity.

This subject will be described in the following order: the air-

frame characteristics, the seeker characteristics, and the combined

operation of the airframe and seeker necessary to obtain this simplifi-

cation.

In order to make a realistic analysis of the system, aerodynamic

and guidance hardware has been chosen on the basis of availability and

simplicity. The airframe, shown in figure l, is a canard configuration

with the front-end (seeker, control system, and control surfaces) bearing

mounted free-to-roll on the aft end. The bearing mounted front end

improves the quality of roll control since roll inertia is reduced and

aerodynamic-induced rolling moments minimized.

The control end of the airframe is shown by the sketch in figure i.

Two of the canard surfaces are used as ailerons, and the other two are

used as elevators. The flicker roll control used requires that the

ailerons be deflected fully in one direction or the other, while the

elevators are fixed at incidence.

The nose design has been influenced by the choice of guidance. A

drag-reducingwind shield is supported by a tripod in front of a flat

pyrex plate-glass window. Behind the window, shown dashed, are the mir-

ror and infrared detector. A lead sulfide cell has been chosen princi-

pally because of its ruggedness and adaptability for test purposes. This

is followed by the electronic element, containing seven vacuum tubes_ and

power supply. A pneumatic supply and regulator are in the next section
which also contains the aileron actuator.



2
•.:..-..."•• • :':..:..-..:-.:.....

The seeker used with this system must be capable of detecting tar-

gets within a narrow rectangle about 5° long by i° wide. The elements

of this detecting system are boresighted, as shown in figure 2, with the

missile axis in such a manner as to aline one end of the detecting rec-

tangle with the axis around which the missile rolls, while the other end

is alined in the direction of lift. No gimbals are necessary since pur-

suit navigation is used.

In operation the airframe and seeker function together as follows:

When the missile rolls, the seeker scans a 12° included angle cone with

about a 2° central dead zone. Figure 3 illustrates this operation. If

a target is located within the active area of this cone, as the missile

rolls the detecting area will cross the target and produce a signal.

This signal is used to reverse the ailerons causing roll in the opposite

direction. This causes the detecting area to recross the target and

again reverse the ailerons. Thus, the missile hunts in roll on the

target.

As the missile hunts, the flight path of the missile is curved

towards the target, since the detecting area and the lift of the airframe

are alined to produce this direction of flight-path correction. As the

flight path curves, the relative motion between missile and target causes

the target to appear to move towards the center end of the seeker rectan-

gle. When the missile is pointed directly towards the target, the target

moves into the central dead spot of the seeker, the roll control is

inactive, and the missile rolls continually while moving towards the tar-

get on an effective straight flight path.

Another way in which the system operation may be described is by

use of the block diagram shown in figure 4. The blocks representing

roll response, angle-of-attack response, and flight-path response are

airframe responses. The optic block and geometry block are guidance

functions and represent the seeker and the geometry. The feedback indi-

cated from angle of attack to the optic input occurs since the seeker is

fastened to the airframe without gimbals. The primary feedbackof geom-

etry and flight path represents the target motion towards the center of

the seeker cone. The roll feedback to the optic input illustrates the

roll control system and represents the roll hunting action. An input to

angle of attack from roll angle is shown and represents the rotating lift

vector and illustrates the point that the direction of lift is dependent

on the roll angle.

Two modes of operation of the airframe are used to obtain a pursuit

chase of the target. During search or during "on target" operation the

missile rolls continually while trimmed in a lifting condition. This

results in a small-diameter (about 3 ft) helical motion, shown in fig-

ure 5, while the missile pursues an effective straight flight path.

When flight-path correction is needed, a flicker roll system functions
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to point the airframe lift towards the target path and produce the

required corrections. The only moving controls are ailerons which are

actuated by the flicker roll control operating directly from target posi-
tion as the primary reference.

When a symmetrical airframe is subjected to combined pitching, yawing,

and rolling motion, as is the case with this system, gyroscopic and other

coupling between rolling and the other motions can occur. This has been

demonstrated by Fhillips (ref. l) and by Nicolaides (ref. 2). The effect

of this coupling is shown by a plot of pitch amplitude ratio against roll

frequency (fig. 6). For this system the operating point for constant roll

and for roll hunting has been kept low to avoid undesirable resonance
effects.

To determine the limitations of the system and to get a quick view

of the type of operation which could be expected, a one-to-one time scale

simulator was constructed using two moving carts operating on a reduced

geometry scale of 30 feet equal to 1 mile. Act'.,al guidance bmmdware was

used on the missile cart shown in figure 7(a). This hardware was mounted

on a driving motor chosen to simulate properly the inertia and damping of

the airframe in roll. This roll simulator was gimbaled and spring-

restrained so that the gimbal inertia, spring, and damping simulated the

airframe short-perlod pitch and yaw oscillation. Two gimbals were used

so that both pitch and yaw were represented. The steering gear was

directly coupled to the yaw glmbal so that the steering angle was equal
to the angle of sideslip.

An automobile headlamp bulb was mounted on the target cart, fig-
ure 7(b), to simulate the exhaust of a Jet airplane target. The missile

cart was accelerated to a speed representing Mach number 1.6 while the

target cart ran at a speed representing Mach number 0.8. Various angles

of launch, from 0°, directly behind the target, to 49 ° off the tail of

the target, were tried, as well as several launching ranges.

Qualitatively, the nature of the system operation was Judged from

this simulator and found to be quite satisfactory. However, due to the

reduced geometry scale and the physical size of the components, accurate

measurements at small ranges could not be made.

In order to provide a more accurate determination a reduced time

scale simulation was set up using REAC equipment plus an auxiliary non-

linear device to represent the optical system and roll control system.

The REAC was used to represent the airframe and part of the kinematic

geometry. The remainder of the geometry, the optical system, and the con-

trol system were simulated by a cathode ray oscilloscope (used to present

target position), an optical and photoelectric pickup, and an electro-
mechanical roll simulator.
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With this equipment, the missile launching range and angle off the

tail of the target to assure a successful flight (a hit) could be deter-

mined accurately. These coordinates were obtained for all significant

positions in the area surrounding the target. This was found to be

divided into a firing area where a hit was always obtained and an area

from which a hit is impossible as shown in figure 8.

The useful area is fairly large considering the type of navigation

used and almost coincides with the infrared signal cone to be expected

from jet aircraft.

It should be noted that this confirms previous work which has been

done on pursuit navigation (ref. 3)_ however, it is believed that the

useful firing area is larger than it has generally been thought to be.

From this investigation, it may be concluded that a homing system

has been devised which attains simplicity by utilizing several aerody-

namic properties of the airframe. The possibility that a similar reduc-

tion in complication could be made in the case of other systems should

be investigated.

Another conclusion is that a missile using pursuit homing has a use-

ful firing area which may well be large enough to be tactically useful.
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